import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing.sequence import pad_sequences import pickle # Load the tokenizer and model with open('tokenizer.pkl', 'rb') as handle: tokenizer = pickle.load(handle) model = load_model('word_classifier_model.keras') def classify_word(word): # Tokenize and pad the input word sequence = tokenizer.texts_to_sequences([word]) padded_sequence = pad_sequences(sequence, maxlen=1) # Predict using the model prediction = model.predict(padded_sequence) #return 1 if prediction >= 0.5 else 0 #return 1 if prediction >= 0.4 else 0 return f'{round(prediction[0][0]*100,3)}%' while True: word = input('>> ') if word == 'exit': break result = classify_word(word) print(f"The word '{word}' is a: {result}")