335 lines
10 KiB
C
335 lines
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_MINMAX_H
|
|
#define _LINUX_MINMAX_H
|
|
|
|
#include <linux/build_bug.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/const.h>
|
|
#include <linux/types.h>
|
|
|
|
/*
|
|
* min()/max()/clamp() macros must accomplish three things:
|
|
*
|
|
* - Avoid multiple evaluations of the arguments (so side-effects like
|
|
* "x++" happen only once) when non-constant.
|
|
* - Retain result as a constant expressions when called with only
|
|
* constant expressions (to avoid tripping VLA warnings in stack
|
|
* allocation usage).
|
|
* - Perform signed v unsigned type-checking (to generate compile
|
|
* errors instead of nasty runtime surprises).
|
|
* - Unsigned char/short are always promoted to signed int and can be
|
|
* compared against signed or unsigned arguments.
|
|
* - Unsigned arguments can be compared against non-negative signed constants.
|
|
* - Comparison of a signed argument against an unsigned constant fails
|
|
* even if the constant is below __INT_MAX__ and could be cast to int.
|
|
*/
|
|
#define __typecheck(x, y) \
|
|
(!!(sizeof((typeof(x) *)1 == (typeof(y) *)1)))
|
|
|
|
/*
|
|
* __sign_use for integer expressions:
|
|
* bit #0 set if ok for unsigned comparisons
|
|
* bit #1 set if ok for signed comparisons
|
|
*
|
|
* In particular, statically non-negative signed integer
|
|
* expressions are ok for both.
|
|
*
|
|
* NOTE! Unsigned types smaller than 'int' are implicitly
|
|
* converted to 'int' in expressions, and are accepted for
|
|
* signed conversions for now. This is debatable.
|
|
*
|
|
* Note that 'x' is the original expression, and 'ux' is
|
|
* the unique variable that contains the value.
|
|
*
|
|
* We use 'ux' for pure type checking, and 'x' for when
|
|
* we need to look at the value (but without evaluating
|
|
* it for side effects! Careful to only ever evaluate it
|
|
* with sizeof() or __builtin_constant_p() etc).
|
|
*
|
|
* Pointers end up being checked by the normal C type
|
|
* rules at the actual comparison, and these expressions
|
|
* only need to be careful to not cause warnings for
|
|
* pointer use.
|
|
*/
|
|
#define __signed_type_use(x,ux) (2+__is_nonneg(x,ux))
|
|
#define __unsigned_type_use(x,ux) (1+2*(sizeof(ux)<4))
|
|
#define __sign_use(x,ux) (is_signed_type(typeof(ux))? \
|
|
__signed_type_use(x,ux):__unsigned_type_use(x,ux))
|
|
|
|
/*
|
|
* To avoid warnings about casting pointers to integers
|
|
* of different sizes, we need that special sign type.
|
|
*
|
|
* On 64-bit we can just always use 'long', since any
|
|
* integer or pointer type can just be cast to that.
|
|
*
|
|
* This does not work for 128-bit signed integers since
|
|
* the cast would truncate them, but we do not use s128
|
|
* types in the kernel (we do use 'u128', but they will
|
|
* be handled by the !is_signed_type() case).
|
|
*
|
|
* NOTE! The cast is there only to avoid any warnings
|
|
* from when values that aren't signed integer types.
|
|
*/
|
|
#ifdef CONFIG_64BIT
|
|
#define __signed_type(ux) long
|
|
#else
|
|
#define __signed_type(ux) typeof(__builtin_choose_expr(sizeof(ux)>4,1LL,1L))
|
|
#endif
|
|
#define __is_nonneg(x,ux) statically_true((__signed_type(ux))(x)>=0)
|
|
|
|
#define __types_ok(x,y,ux,uy) \
|
|
(__sign_use(x,ux) & __sign_use(y,uy))
|
|
|
|
#define __types_ok3(x,y,z,ux,uy,uz) \
|
|
(__sign_use(x,ux) & __sign_use(y,uy) & __sign_use(z,uz))
|
|
|
|
#define __cmp_op_min <
|
|
#define __cmp_op_max >
|
|
|
|
#define __cmp(op, x, y) ((x) __cmp_op_##op (y) ? (x) : (y))
|
|
|
|
#define __cmp_once_unique(op, type, x, y, ux, uy) \
|
|
({ type ux = (x); type uy = (y); __cmp(op, ux, uy); })
|
|
|
|
#define __cmp_once(op, type, x, y) \
|
|
__cmp_once_unique(op, type, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
|
|
|
|
#define __careful_cmp_once(op, x, y, ux, uy) ({ \
|
|
__auto_type ux = (x); __auto_type uy = (y); \
|
|
BUILD_BUG_ON_MSG(!__types_ok(x,y,ux,uy), \
|
|
#op"("#x", "#y") signedness error"); \
|
|
__cmp(op, ux, uy); })
|
|
|
|
#define __careful_cmp(op, x, y) \
|
|
__careful_cmp_once(op, x, y, __UNIQUE_ID(x_), __UNIQUE_ID(y_))
|
|
|
|
#define __clamp(val, lo, hi) \
|
|
((val) >= (hi) ? (hi) : ((val) <= (lo) ? (lo) : (val)))
|
|
|
|
#define __clamp_once(val, lo, hi, uval, ulo, uhi) ({ \
|
|
__auto_type uval = (val); \
|
|
__auto_type ulo = (lo); \
|
|
__auto_type uhi = (hi); \
|
|
static_assert(__builtin_choose_expr(__is_constexpr((lo) > (hi)), \
|
|
(lo) <= (hi), true), \
|
|
"clamp() low limit " #lo " greater than high limit " #hi); \
|
|
BUILD_BUG_ON_MSG(!__types_ok3(val,lo,hi,uval,ulo,uhi), \
|
|
"clamp("#val", "#lo", "#hi") signedness error"); \
|
|
__clamp(uval, ulo, uhi); })
|
|
|
|
#define __careful_clamp(val, lo, hi) \
|
|
__clamp_once(val, lo, hi, __UNIQUE_ID(v_), __UNIQUE_ID(l_), __UNIQUE_ID(h_))
|
|
|
|
/**
|
|
* min - return minimum of two values of the same or compatible types
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define min(x, y) __careful_cmp(min, x, y)
|
|
|
|
/**
|
|
* max - return maximum of two values of the same or compatible types
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define max(x, y) __careful_cmp(max, x, y)
|
|
|
|
/**
|
|
* umin - return minimum of two non-negative values
|
|
* Signed types are zero extended to match a larger unsigned type.
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define umin(x, y) \
|
|
__careful_cmp(min, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
|
|
|
|
/**
|
|
* umax - return maximum of two non-negative values
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define umax(x, y) \
|
|
__careful_cmp(max, (x) + 0u + 0ul + 0ull, (y) + 0u + 0ul + 0ull)
|
|
|
|
#define __careful_op3(op, x, y, z, ux, uy, uz) ({ \
|
|
__auto_type ux = (x); __auto_type uy = (y);__auto_type uz = (z);\
|
|
BUILD_BUG_ON_MSG(!__types_ok3(x,y,z,ux,uy,uz), \
|
|
#op"3("#x", "#y", "#z") signedness error"); \
|
|
__cmp(op, ux, __cmp(op, uy, uz)); })
|
|
|
|
/**
|
|
* min3 - return minimum of three values
|
|
* @x: first value
|
|
* @y: second value
|
|
* @z: third value
|
|
*/
|
|
#define min3(x, y, z) \
|
|
__careful_op3(min, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
|
|
|
|
/**
|
|
* max3 - return maximum of three values
|
|
* @x: first value
|
|
* @y: second value
|
|
* @z: third value
|
|
*/
|
|
#define max3(x, y, z) \
|
|
__careful_op3(max, x, y, z, __UNIQUE_ID(x_), __UNIQUE_ID(y_), __UNIQUE_ID(z_))
|
|
|
|
/**
|
|
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
|
|
* @x: value1
|
|
* @y: value2
|
|
*/
|
|
#define min_not_zero(x, y) ({ \
|
|
typeof(x) __x = (x); \
|
|
typeof(y) __y = (y); \
|
|
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
|
|
|
|
/**
|
|
* clamp - return a value clamped to a given range with strict typechecking
|
|
* @val: current value
|
|
* @lo: lowest allowable value
|
|
* @hi: highest allowable value
|
|
*
|
|
* This macro does strict typechecking of @lo/@hi to make sure they are of the
|
|
* same type as @val. See the unnecessary pointer comparisons.
|
|
*/
|
|
#define clamp(val, lo, hi) __careful_clamp(val, lo, hi)
|
|
|
|
/*
|
|
* ..and if you can't take the strict
|
|
* types, you can specify one yourself.
|
|
*
|
|
* Or not use min/max/clamp at all, of course.
|
|
*/
|
|
|
|
/**
|
|
* min_t - return minimum of two values, using the specified type
|
|
* @type: data type to use
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define min_t(type, x, y) __cmp_once(min, type, x, y)
|
|
|
|
/**
|
|
* max_t - return maximum of two values, using the specified type
|
|
* @type: data type to use
|
|
* @x: first value
|
|
* @y: second value
|
|
*/
|
|
#define max_t(type, x, y) __cmp_once(max, type, x, y)
|
|
|
|
/*
|
|
* Do not check the array parameter using __must_be_array().
|
|
* In the following legit use-case where the "array" passed is a simple pointer,
|
|
* __must_be_array() will return a failure.
|
|
* --- 8< ---
|
|
* int *buff
|
|
* ...
|
|
* min = min_array(buff, nb_items);
|
|
* --- 8< ---
|
|
*
|
|
* The first typeof(&(array)[0]) is needed in order to support arrays of both
|
|
* 'int *buff' and 'int buff[N]' types.
|
|
*
|
|
* The array can be an array of const items.
|
|
* typeof() keeps the const qualifier. Use __unqual_scalar_typeof() in order
|
|
* to discard the const qualifier for the __element variable.
|
|
*/
|
|
#define __minmax_array(op, array, len) ({ \
|
|
typeof(&(array)[0]) __array = (array); \
|
|
typeof(len) __len = (len); \
|
|
__unqual_scalar_typeof(__array[0]) __element = __array[--__len];\
|
|
while (__len--) \
|
|
__element = op(__element, __array[__len]); \
|
|
__element; })
|
|
|
|
/**
|
|
* min_array - return minimum of values present in an array
|
|
* @array: array
|
|
* @len: array length
|
|
*
|
|
* Note that @len must not be zero (empty array).
|
|
*/
|
|
#define min_array(array, len) __minmax_array(min, array, len)
|
|
|
|
/**
|
|
* max_array - return maximum of values present in an array
|
|
* @array: array
|
|
* @len: array length
|
|
*
|
|
* Note that @len must not be zero (empty array).
|
|
*/
|
|
#define max_array(array, len) __minmax_array(max, array, len)
|
|
|
|
/**
|
|
* clamp_t - return a value clamped to a given range using a given type
|
|
* @type: the type of variable to use
|
|
* @val: current value
|
|
* @lo: minimum allowable value
|
|
* @hi: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of type
|
|
* @type to make all the comparisons.
|
|
*/
|
|
#define clamp_t(type, val, lo, hi) __careful_clamp((type)(val), (type)(lo), (type)(hi))
|
|
|
|
/**
|
|
* clamp_val - return a value clamped to a given range using val's type
|
|
* @val: current value
|
|
* @lo: minimum allowable value
|
|
* @hi: maximum allowable value
|
|
*
|
|
* This macro does no typechecking and uses temporary variables of whatever
|
|
* type the input argument @val is. This is useful when @val is an unsigned
|
|
* type and @lo and @hi are literals that will otherwise be assigned a signed
|
|
* integer type.
|
|
*/
|
|
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
|
|
|
|
static inline bool in_range64(u64 val, u64 start, u64 len)
|
|
{
|
|
return (val - start) < len;
|
|
}
|
|
|
|
static inline bool in_range32(u32 val, u32 start, u32 len)
|
|
{
|
|
return (val - start) < len;
|
|
}
|
|
|
|
/**
|
|
* in_range - Determine if a value lies within a range.
|
|
* @val: Value to test.
|
|
* @start: First value in range.
|
|
* @len: Number of values in range.
|
|
*
|
|
* This is more efficient than "if (start <= val && val < (start + len))".
|
|
* It also gives a different answer if @start + @len overflows the size of
|
|
* the type by a sufficient amount to encompass @val. Decide for yourself
|
|
* which behaviour you want, or prove that start + len never overflow.
|
|
* Do not blindly replace one form with the other.
|
|
*/
|
|
#define in_range(val, start, len) \
|
|
((sizeof(start) | sizeof(len) | sizeof(val)) <= sizeof(u32) ? \
|
|
in_range32(val, start, len) : in_range64(val, start, len))
|
|
|
|
/**
|
|
* swap - swap values of @a and @b
|
|
* @a: first value
|
|
* @b: second value
|
|
*/
|
|
#define swap(a, b) \
|
|
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
|
|
|
|
/*
|
|
* Use these carefully: no type checking, and uses the arguments
|
|
* multiple times. Use for obvious constants only.
|
|
*/
|
|
#define MIN(a,b) __cmp(min,a,b)
|
|
#define MAX(a,b) __cmp(max,a,b)
|
|
#define MIN_T(type,a,b) __cmp(min,(type)(a),(type)(b))
|
|
#define MAX_T(type,a,b) __cmp(max,(type)(a),(type)(b))
|
|
|
|
#endif /* _LINUX_MINMAX_H */
|