JustOS/linux-6.13/drivers/media/platform/raspberrypi/rp1-cfe/pisp-fe.c
justuser 02e73b8cd9 up
2025-01-24 17:00:19 +03:00

606 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* PiSP Front End Driver
*
* Copyright (c) 2021-2024 Raspberry Pi Ltd.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/pm_runtime.h>
#include <linux/seq_file.h>
#include <media/videobuf2-dma-contig.h>
#include "cfe.h"
#include "pisp-fe.h"
#include "cfe-trace.h"
#define FE_VERSION 0x000
#define FE_CONTROL 0x004
#define FE_STATUS 0x008
#define FE_FRAME_STATUS 0x00c
#define FE_ERROR_STATUS 0x010
#define FE_OUTPUT_STATUS 0x014
#define FE_INT_EN 0x018
#define FE_INT_STATUS 0x01c
/* CONTROL */
#define FE_CONTROL_QUEUE BIT(0)
#define FE_CONTROL_ABORT BIT(1)
#define FE_CONTROL_RESET BIT(2)
#define FE_CONTROL_LATCH_REGS BIT(3)
/* INT_EN / INT_STATUS */
#define FE_INT_EOF BIT(0)
#define FE_INT_SOF BIT(1)
#define FE_INT_LINES0 BIT(8)
#define FE_INT_LINES1 BIT(9)
#define FE_INT_STATS BIT(16)
#define FE_INT_QREADY BIT(24)
/* STATUS */
#define FE_STATUS_QUEUED BIT(0)
#define FE_STATUS_WAITING BIT(1)
#define FE_STATUS_ACTIVE BIT(2)
#define PISP_FE_CONFIG_BASE_OFFSET 0x0040
#define PISP_FE_ENABLE_STATS_CLUSTER \
(PISP_FE_ENABLE_STATS_CROP | PISP_FE_ENABLE_DECIMATE | \
PISP_FE_ENABLE_BLC | PISP_FE_ENABLE_CDAF_STATS | \
PISP_FE_ENABLE_AWB_STATS | PISP_FE_ENABLE_RGBY | \
PISP_FE_ENABLE_LSC | PISP_FE_ENABLE_AGC_STATS)
#define PISP_FE_ENABLE_OUTPUT_CLUSTER(i) \
((PISP_FE_ENABLE_CROP0 | PISP_FE_ENABLE_DOWNSCALE0 | \
PISP_FE_ENABLE_COMPRESS0 | PISP_FE_ENABLE_OUTPUT0) << (4 * (i)))
struct pisp_fe_config_param {
u32 dirty_flags;
u32 dirty_flags_extra;
size_t offset;
size_t size;
};
static const struct pisp_fe_config_param pisp_fe_config_map[] = {
/* *_dirty_flag_extra types */
{ 0, PISP_FE_DIRTY_GLOBAL,
offsetof(struct pisp_fe_config, global),
sizeof(struct pisp_fe_global_config) },
{ 0, PISP_FE_DIRTY_FLOATING,
offsetof(struct pisp_fe_config, floating_stats),
sizeof(struct pisp_fe_floating_stats_config) },
{ 0, PISP_FE_DIRTY_OUTPUT_AXI,
offsetof(struct pisp_fe_config, output_axi),
sizeof(struct pisp_fe_output_axi_config) },
/* *_dirty_flag types */
{ PISP_FE_ENABLE_INPUT, 0,
offsetof(struct pisp_fe_config, input),
sizeof(struct pisp_fe_input_config) },
{ PISP_FE_ENABLE_DECOMPRESS, 0,
offsetof(struct pisp_fe_config, decompress),
sizeof(struct pisp_decompress_config) },
{ PISP_FE_ENABLE_DECOMPAND, 0,
offsetof(struct pisp_fe_config, decompand),
sizeof(struct pisp_fe_decompand_config) },
{ PISP_FE_ENABLE_BLA, 0,
offsetof(struct pisp_fe_config, bla),
sizeof(struct pisp_bla_config) },
{ PISP_FE_ENABLE_DPC, 0,
offsetof(struct pisp_fe_config, dpc),
sizeof(struct pisp_fe_dpc_config) },
{ PISP_FE_ENABLE_STATS_CROP, 0,
offsetof(struct pisp_fe_config, stats_crop),
sizeof(struct pisp_fe_crop_config) },
{ PISP_FE_ENABLE_BLC, 0,
offsetof(struct pisp_fe_config, blc),
sizeof(struct pisp_bla_config) },
{ PISP_FE_ENABLE_CDAF_STATS, 0,
offsetof(struct pisp_fe_config, cdaf_stats),
sizeof(struct pisp_fe_cdaf_stats_config) },
{ PISP_FE_ENABLE_AWB_STATS, 0,
offsetof(struct pisp_fe_config, awb_stats),
sizeof(struct pisp_fe_awb_stats_config) },
{ PISP_FE_ENABLE_RGBY, 0,
offsetof(struct pisp_fe_config, rgby),
sizeof(struct pisp_fe_rgby_config) },
{ PISP_FE_ENABLE_LSC, 0,
offsetof(struct pisp_fe_config, lsc),
sizeof(struct pisp_fe_lsc_config) },
{ PISP_FE_ENABLE_AGC_STATS, 0,
offsetof(struct pisp_fe_config, agc_stats),
sizeof(struct pisp_agc_statistics) },
{ PISP_FE_ENABLE_CROP0, 0,
offsetof(struct pisp_fe_config, ch[0].crop),
sizeof(struct pisp_fe_crop_config) },
{ PISP_FE_ENABLE_DOWNSCALE0, 0,
offsetof(struct pisp_fe_config, ch[0].downscale),
sizeof(struct pisp_fe_downscale_config) },
{ PISP_FE_ENABLE_COMPRESS0, 0,
offsetof(struct pisp_fe_config, ch[0].compress),
sizeof(struct pisp_compress_config) },
{ PISP_FE_ENABLE_OUTPUT0, 0,
offsetof(struct pisp_fe_config, ch[0].output),
sizeof(struct pisp_fe_output_config) },
{ PISP_FE_ENABLE_CROP1, 0,
offsetof(struct pisp_fe_config, ch[1].crop),
sizeof(struct pisp_fe_crop_config) },
{ PISP_FE_ENABLE_DOWNSCALE1, 0,
offsetof(struct pisp_fe_config, ch[1].downscale),
sizeof(struct pisp_fe_downscale_config) },
{ PISP_FE_ENABLE_COMPRESS1, 0,
offsetof(struct pisp_fe_config, ch[1].compress),
sizeof(struct pisp_compress_config) },
{ PISP_FE_ENABLE_OUTPUT1, 0,
offsetof(struct pisp_fe_config, ch[1].output),
sizeof(struct pisp_fe_output_config) },
};
#define pisp_fe_dbg(fe, fmt, arg...) dev_dbg((fe)->v4l2_dev->dev, fmt, ##arg)
#define pisp_fe_info(fe, fmt, arg...) dev_info((fe)->v4l2_dev->dev, fmt, ##arg)
#define pisp_fe_err(fe, fmt, arg...) dev_err((fe)->v4l2_dev->dev, fmt, ##arg)
static inline u32 pisp_fe_reg_read(struct pisp_fe_device *fe, u32 offset)
{
return readl(fe->base + offset);
}
static inline void pisp_fe_reg_write(struct pisp_fe_device *fe, u32 offset,
u32 val)
{
writel(val, fe->base + offset);
}
static inline void pisp_fe_reg_write_relaxed(struct pisp_fe_device *fe,
u32 offset, u32 val)
{
writel_relaxed(val, fe->base + offset);
}
static int pisp_fe_regs_show(struct seq_file *s, void *data)
{
struct pisp_fe_device *fe = s->private;
int ret;
ret = pm_runtime_resume_and_get(fe->v4l2_dev->dev);
if (ret)
return ret;
pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_LATCH_REGS);
#define DUMP(reg) seq_printf(s, #reg " \t0x%08x\n", pisp_fe_reg_read(fe, reg))
DUMP(FE_VERSION);
DUMP(FE_CONTROL);
DUMP(FE_STATUS);
DUMP(FE_FRAME_STATUS);
DUMP(FE_ERROR_STATUS);
DUMP(FE_OUTPUT_STATUS);
DUMP(FE_INT_EN);
DUMP(FE_INT_STATUS);
#undef DUMP
pm_runtime_put(fe->v4l2_dev->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(pisp_fe_regs);
static void pisp_fe_config_write(struct pisp_fe_device *fe,
struct pisp_fe_config *config,
unsigned int start_offset, unsigned int size)
{
const unsigned int max_offset =
offsetof(struct pisp_fe_config, ch[PISP_FE_NUM_OUTPUTS]);
unsigned int end_offset;
u32 *cfg = (u32 *)config;
start_offset = min(start_offset, max_offset);
end_offset = min(start_offset + size, max_offset);
cfg += start_offset >> 2;
for (unsigned int i = start_offset; i < end_offset; i += 4, cfg++)
pisp_fe_reg_write_relaxed(fe, PISP_FE_CONFIG_BASE_OFFSET + i,
*cfg);
}
void pisp_fe_isr(struct pisp_fe_device *fe, bool *sof, bool *eof)
{
u32 status, int_status, out_status, frame_status, error_status;
pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_LATCH_REGS);
status = pisp_fe_reg_read(fe, FE_STATUS);
out_status = pisp_fe_reg_read(fe, FE_OUTPUT_STATUS);
frame_status = pisp_fe_reg_read(fe, FE_FRAME_STATUS);
error_status = pisp_fe_reg_read(fe, FE_ERROR_STATUS);
int_status = pisp_fe_reg_read(fe, FE_INT_STATUS);
pisp_fe_reg_write(fe, FE_INT_STATUS, int_status);
trace_fe_irq(status, out_status, frame_status, error_status,
int_status);
/* We do not report interrupts for the input/stream pad. */
for (unsigned int i = 0; i < FE_NUM_PADS - 1; i++) {
sof[i] = !!(int_status & FE_INT_SOF);
eof[i] = !!(int_status & FE_INT_EOF);
}
}
static bool pisp_fe_validate_output(struct pisp_fe_config const *cfg,
unsigned int c, struct v4l2_format const *f)
{
unsigned int wbytes;
wbytes = cfg->ch[c].output.format.width;
if (cfg->ch[c].output.format.format & PISP_IMAGE_FORMAT_BPS_MASK)
wbytes *= 2;
/* Check output image dimensions are nonzero and not too big */
if (cfg->ch[c].output.format.width < 2 ||
cfg->ch[c].output.format.height < 2 ||
cfg->ch[c].output.format.height > f->fmt.pix.height ||
cfg->ch[c].output.format.stride > f->fmt.pix.bytesperline ||
wbytes > f->fmt.pix.bytesperline)
return false;
/* Check for zero-sized crops, which could cause lockup */
if ((cfg->global.enables & PISP_FE_ENABLE_CROP(c)) &&
((cfg->ch[c].crop.offset_x >= (cfg->input.format.width & ~1) ||
cfg->ch[c].crop.offset_y >= cfg->input.format.height ||
cfg->ch[c].crop.width < 2 || cfg->ch[c].crop.height < 2)))
return false;
if ((cfg->global.enables & PISP_FE_ENABLE_DOWNSCALE(c)) &&
(cfg->ch[c].downscale.output_width < 2 ||
cfg->ch[c].downscale.output_height < 2))
return false;
return true;
}
static bool pisp_fe_validate_stats(struct pisp_fe_config const *cfg)
{
/* Check for zero-sized crop, which could cause lockup */
return (!(cfg->global.enables & PISP_FE_ENABLE_STATS_CROP) ||
(cfg->stats_crop.offset_x < (cfg->input.format.width & ~1) &&
cfg->stats_crop.offset_y < cfg->input.format.height &&
cfg->stats_crop.width >= 2 && cfg->stats_crop.height >= 2));
}
int pisp_fe_validate_config(struct pisp_fe_device *fe,
struct pisp_fe_config *cfg,
struct v4l2_format const *f0,
struct v4l2_format const *f1)
{
/*
* Check the input is enabled, streaming and has nonzero size;
* to avoid cases where the hardware might lock up or try to
* read inputs from memory (which this driver doesn't support).
*/
if (!(cfg->global.enables & PISP_FE_ENABLE_INPUT) ||
cfg->input.streaming != 1 || cfg->input.format.width < 2 ||
cfg->input.format.height < 2) {
pisp_fe_err(fe, "%s: Input config not valid", __func__);
return -EINVAL;
}
for (unsigned int i = 0; i < PISP_FE_NUM_OUTPUTS; i++) {
if (!(cfg->global.enables & PISP_FE_ENABLE_OUTPUT(i))) {
if (cfg->global.enables &
PISP_FE_ENABLE_OUTPUT_CLUSTER(i)) {
pisp_fe_err(fe, "%s: Output %u not valid",
__func__, i);
return -EINVAL;
}
continue;
}
if (!pisp_fe_validate_output(cfg, i, i ? f1 : f0))
return -EINVAL;
}
if ((cfg->global.enables & PISP_FE_ENABLE_STATS_CLUSTER) &&
!pisp_fe_validate_stats(cfg)) {
pisp_fe_err(fe, "%s: Stats config not valid", __func__);
return -EINVAL;
}
return 0;
}
void pisp_fe_submit_job(struct pisp_fe_device *fe, struct vb2_buffer **vb2_bufs,
struct pisp_fe_config *cfg)
{
u64 addr;
u32 status;
/*
* Check output buffers exist and outputs are correctly configured.
* If valid, set the buffer's DMA address; otherwise disable.
*/
for (unsigned int i = 0; i < PISP_FE_NUM_OUTPUTS; i++) {
struct vb2_buffer *buf = vb2_bufs[FE_OUTPUT0_PAD + i];
if (!(cfg->global.enables & PISP_FE_ENABLE_OUTPUT(i)))
continue;
addr = vb2_dma_contig_plane_dma_addr(buf, 0);
cfg->output_buffer[i].addr_lo = addr & 0xffffffff;
cfg->output_buffer[i].addr_hi = addr >> 32;
}
if (vb2_bufs[FE_STATS_PAD]) {
addr = vb2_dma_contig_plane_dma_addr(vb2_bufs[FE_STATS_PAD], 0);
cfg->stats_buffer.addr_lo = addr & 0xffffffff;
cfg->stats_buffer.addr_hi = addr >> 32;
}
/* Set up ILINES interrupts 3/4 of the way down each output */
cfg->ch[0].output.ilines =
max(0x80u, (3u * cfg->ch[0].output.format.height) >> 2);
cfg->ch[1].output.ilines =
max(0x80u, (3u * cfg->ch[1].output.format.height) >> 2);
/*
* The hardware must have consumed the previous config by now.
* This read of status also serves as a memory barrier before the
* sequence of relaxed writes which follow.
*/
status = pisp_fe_reg_read(fe, FE_STATUS);
if (WARN_ON(status & FE_STATUS_QUEUED))
return;
/*
* Unconditionally write buffers, global and input parameters.
* Write cropping and output parameters whenever they are enabled.
* Selectively write other parameters that have been marked as
* changed through the dirty flags.
*/
pisp_fe_config_write(fe, cfg, 0,
offsetof(struct pisp_fe_config, decompress));
cfg->dirty_flags_extra &= ~PISP_FE_DIRTY_GLOBAL;
cfg->dirty_flags &= ~PISP_FE_ENABLE_INPUT;
cfg->dirty_flags |= (cfg->global.enables &
(PISP_FE_ENABLE_STATS_CROP |
PISP_FE_ENABLE_OUTPUT_CLUSTER(0) |
PISP_FE_ENABLE_OUTPUT_CLUSTER(1)));
for (unsigned int i = 0; i < ARRAY_SIZE(pisp_fe_config_map); i++) {
const struct pisp_fe_config_param *p = &pisp_fe_config_map[i];
if (cfg->dirty_flags & p->dirty_flags ||
cfg->dirty_flags_extra & p->dirty_flags_extra)
pisp_fe_config_write(fe, cfg, p->offset, p->size);
}
/* This final non-relaxed write serves as a memory barrier */
pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_QUEUE);
}
void pisp_fe_start(struct pisp_fe_device *fe)
{
pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_RESET);
pisp_fe_reg_write(fe, FE_INT_STATUS, ~0);
pisp_fe_reg_write(fe, FE_INT_EN, FE_INT_EOF | FE_INT_SOF |
FE_INT_LINES0 | FE_INT_LINES1);
fe->inframe_count = 0;
}
void pisp_fe_stop(struct pisp_fe_device *fe)
{
pisp_fe_reg_write(fe, FE_INT_EN, 0);
pisp_fe_reg_write(fe, FE_CONTROL, FE_CONTROL_ABORT);
usleep_range(1000, 2000);
WARN_ON(pisp_fe_reg_read(fe, FE_STATUS));
pisp_fe_reg_write(fe, FE_INT_STATUS, ~0);
}
static int pisp_fe_init_state(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_state_get_format(state, FE_STREAM_PAD);
*fmt = cfe_default_format;
fmt->code = MEDIA_BUS_FMT_SRGGB16_1X16;
fmt = v4l2_subdev_state_get_format(state, FE_CONFIG_PAD);
fmt->code = MEDIA_BUS_FMT_FIXED;
fmt->width = sizeof(struct pisp_fe_config);
fmt->height = 1;
fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT0_PAD);
*fmt = cfe_default_format;
fmt->code = MEDIA_BUS_FMT_SRGGB16_1X16;
fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT1_PAD);
*fmt = cfe_default_format;
fmt->code = MEDIA_BUS_FMT_SRGGB16_1X16;
fmt = v4l2_subdev_state_get_format(state, FE_STATS_PAD);
fmt->code = MEDIA_BUS_FMT_FIXED;
fmt->width = sizeof(struct pisp_statistics);
fmt->height = 1;
return 0;
}
static int pisp_fe_pad_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
struct v4l2_mbus_framefmt *fmt;
const struct cfe_fmt *cfe_fmt;
/* TODO: format propagation to source pads */
/* TODO: format validation */
switch (format->pad) {
case FE_STREAM_PAD:
cfe_fmt = find_format_by_code(format->format.code);
if (!cfe_fmt || !(cfe_fmt->flags & CFE_FORMAT_FLAG_FE_OUT))
cfe_fmt = find_format_by_code(MEDIA_BUS_FMT_SRGGB16_1X16);
format->format.code = cfe_fmt->code;
format->format.field = V4L2_FIELD_NONE;
fmt = v4l2_subdev_state_get_format(state, FE_STREAM_PAD);
*fmt = format->format;
fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT0_PAD);
*fmt = format->format;
fmt = v4l2_subdev_state_get_format(state, FE_OUTPUT1_PAD);
*fmt = format->format;
return 0;
case FE_OUTPUT0_PAD:
case FE_OUTPUT1_PAD: {
/*
* TODO: we should allow scaling and cropping by allowing the
* user to set the size here.
*/
struct v4l2_mbus_framefmt *sink_fmt, *source_fmt;
u32 sink_code;
u32 code;
cfe_fmt = find_format_by_code(format->format.code);
if (!cfe_fmt || !(cfe_fmt->flags & CFE_FORMAT_FLAG_FE_OUT))
cfe_fmt = find_format_by_code(MEDIA_BUS_FMT_SRGGB16_1X16);
format->format.code = cfe_fmt->code;
sink_fmt = v4l2_subdev_state_get_format(state, FE_STREAM_PAD);
if (!sink_fmt)
return -EINVAL;
source_fmt = v4l2_subdev_state_get_format(state, format->pad);
if (!source_fmt)
return -EINVAL;
sink_code = sink_fmt->code;
code = format->format.code;
/*
* If the source code from the user does not match the code in
* the sink pad, check that the source code matches the
* compressed version of the sink code.
*/
if (code != sink_code &&
code == cfe_find_compressed_code(sink_code))
source_fmt->code = code;
return 0;
}
case FE_CONFIG_PAD:
case FE_STATS_PAD:
default:
return v4l2_subdev_get_fmt(sd, state, format);
}
}
static const struct v4l2_subdev_pad_ops pisp_fe_subdev_pad_ops = {
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = pisp_fe_pad_set_fmt,
.link_validate = v4l2_subdev_link_validate_default,
};
static int pisp_fe_link_validate(struct media_link *link)
{
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(link->sink->entity);
struct pisp_fe_device *fe = container_of(sd, struct pisp_fe_device, sd);
pisp_fe_dbg(fe, "%s: link \"%s\":%u -> \"%s\":%u\n", __func__,
link->source->entity->name, link->source->index,
link->sink->entity->name, link->sink->index);
if (link->sink->index == FE_STREAM_PAD)
return v4l2_subdev_link_validate(link);
if (link->sink->index == FE_CONFIG_PAD)
return 0;
return -EINVAL;
}
static const struct media_entity_operations pisp_fe_entity_ops = {
.link_validate = pisp_fe_link_validate,
};
static const struct v4l2_subdev_ops pisp_fe_subdev_ops = {
.pad = &pisp_fe_subdev_pad_ops,
};
static const struct v4l2_subdev_internal_ops pisp_fe_internal_ops = {
.init_state = pisp_fe_init_state,
};
int pisp_fe_init(struct pisp_fe_device *fe, struct dentry *debugfs)
{
int ret;
debugfs_create_file("fe_regs", 0440, debugfs, fe, &pisp_fe_regs_fops);
fe->hw_revision = pisp_fe_reg_read(fe, FE_VERSION);
pisp_fe_info(fe, "PiSP FE HW v%u.%u\n",
(fe->hw_revision >> 24) & 0xff,
(fe->hw_revision >> 20) & 0x0f);
fe->pad[FE_STREAM_PAD].flags =
MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT;
fe->pad[FE_CONFIG_PAD].flags = MEDIA_PAD_FL_SINK;
fe->pad[FE_OUTPUT0_PAD].flags = MEDIA_PAD_FL_SOURCE;
fe->pad[FE_OUTPUT1_PAD].flags = MEDIA_PAD_FL_SOURCE;
fe->pad[FE_STATS_PAD].flags = MEDIA_PAD_FL_SOURCE;
ret = media_entity_pads_init(&fe->sd.entity, ARRAY_SIZE(fe->pad),
fe->pad);
if (ret)
return ret;
/* Initialize subdev */
v4l2_subdev_init(&fe->sd, &pisp_fe_subdev_ops);
fe->sd.internal_ops = &pisp_fe_internal_ops;
fe->sd.entity.function = MEDIA_ENT_F_PROC_VIDEO_SCALER;
fe->sd.entity.ops = &pisp_fe_entity_ops;
fe->sd.entity.name = "pisp-fe";
fe->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
fe->sd.owner = THIS_MODULE;
snprintf(fe->sd.name, sizeof(fe->sd.name), "pisp-fe");
ret = v4l2_subdev_init_finalize(&fe->sd);
if (ret)
goto err_entity_cleanup;
ret = v4l2_device_register_subdev(fe->v4l2_dev, &fe->sd);
if (ret) {
pisp_fe_err(fe, "Failed register pisp fe subdev (%d)\n", ret);
goto err_subdev_cleanup;
}
/* Must be in IDLE state (STATUS == 0) here. */
WARN_ON(pisp_fe_reg_read(fe, FE_STATUS));
return 0;
err_subdev_cleanup:
v4l2_subdev_cleanup(&fe->sd);
err_entity_cleanup:
media_entity_cleanup(&fe->sd.entity);
return ret;
}
void pisp_fe_uninit(struct pisp_fe_device *fe)
{
v4l2_device_unregister_subdev(&fe->sd);
v4l2_subdev_cleanup(&fe->sd);
media_entity_cleanup(&fe->sd.entity);
}