JustOS/linux-6.13/drivers/media/platform/raspberrypi/rp1-cfe/cfe.c
justuser 02e73b8cd9 up
2025-01-24 17:00:19 +03:00

2510 lines
63 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* RP1 Camera Front End Driver
*
* Copyright (c) 2021-2024 Raspberry Pi Ltd.
* Copyright (c) 2023-2024 Ideas on Board Oy
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/fwnode.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/lcm.h>
#include <linux/math.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/property.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/videodev2.h>
#include <media/v4l2-async.h>
#include <media/v4l2-common.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-event.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mc.h>
#include <media/videobuf2-dma-contig.h>
#include <linux/media/raspberrypi/pisp_fe_config.h>
#include <linux/media/raspberrypi/pisp_fe_statistics.h>
#include "cfe-fmts.h"
#include "cfe.h"
#include "csi2.h"
#include "pisp-fe.h"
#define CREATE_TRACE_POINTS
#include "cfe-trace.h"
#define CFE_MODULE_NAME "rp1-cfe"
#define CFE_VERSION "1.0"
#define cfe_dbg(cfe, fmt, arg...) dev_dbg(&(cfe)->pdev->dev, fmt, ##arg)
#define cfe_info(cfe, fmt, arg...) dev_info(&(cfe)->pdev->dev, fmt, ##arg)
#define cfe_err(cfe, fmt, arg...) dev_err(&(cfe)->pdev->dev, fmt, ##arg)
/* MIPICFG registers */
#define MIPICFG_CFG 0x004
#define MIPICFG_INTR 0x028
#define MIPICFG_INTE 0x02c
#define MIPICFG_INTF 0x030
#define MIPICFG_INTS 0x034
#define MIPICFG_CFG_SEL_CSI BIT(0)
#define MIPICFG_INT_CSI_DMA BIT(0)
#define MIPICFG_INT_CSI_HOST BIT(2)
#define MIPICFG_INT_PISP_FE BIT(4)
#define BPL_ALIGNMENT 16
#define MAX_BYTESPERLINE 0xffffff00
#define MAX_BUFFER_SIZE 0xffffff00
/*
* Max width is therefore determined by the max stride divided by the number of
* bits per pixel.
*
* However, to avoid overflow issues let's use a 16k maximum. This lets us
* calculate 16k * 16k * 4 with 32bits. If we need higher maximums, a careful
* review and adjustment of the code is needed so that it will deal with
* overflows correctly.
*/
#define MAX_WIDTH 16384
#define MAX_HEIGHT MAX_WIDTH
/* Define a nominal minimum image size */
#define MIN_WIDTH 16
#define MIN_HEIGHT 16
#define MIN_META_WIDTH 4
#define MIN_META_HEIGHT 1
const struct v4l2_mbus_framefmt cfe_default_format = {
.width = 640,
.height = 480,
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
.field = V4L2_FIELD_NONE,
.colorspace = V4L2_COLORSPACE_RAW,
.ycbcr_enc = V4L2_YCBCR_ENC_601,
.quantization = V4L2_QUANTIZATION_FULL_RANGE,
.xfer_func = V4L2_XFER_FUNC_NONE,
};
enum node_ids {
/* CSI2 HW output nodes first. */
CSI2_CH0,
CSI2_CH1,
CSI2_CH2,
CSI2_CH3,
/* FE only nodes from here on. */
FE_OUT0,
FE_OUT1,
FE_STATS,
FE_CONFIG,
NUM_NODES
};
struct node_description {
enum node_ids id;
const char *name;
unsigned int caps;
unsigned int pad_flags;
unsigned int link_pad;
};
/* Must match the ordering of enum ids */
static const struct node_description node_desc[NUM_NODES] = {
[CSI2_CH0] = {
.name = "csi2-ch0",
.caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE,
.pad_flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = CSI2_PAD_FIRST_SOURCE + 0
},
/*
* At the moment the main userspace component (libcamera) doesn't
* support metadata with video nodes that support both video and
* metadata. So for the time being this node is set to only support
* V4L2_CAP_META_CAPTURE.
*/
[CSI2_CH1] = {
.name = "csi2-ch1",
.caps = V4L2_CAP_META_CAPTURE,
.pad_flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = CSI2_PAD_FIRST_SOURCE + 1
},
[CSI2_CH2] = {
.name = "csi2-ch2",
.caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE,
.pad_flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = CSI2_PAD_FIRST_SOURCE + 2
},
[CSI2_CH3] = {
.name = "csi2-ch3",
.caps = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE,
.pad_flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = CSI2_PAD_FIRST_SOURCE + 3
},
[FE_OUT0] = {
.name = "fe-image0",
.caps = V4L2_CAP_VIDEO_CAPTURE,
.pad_flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = FE_OUTPUT0_PAD
},
[FE_OUT1] = {
.name = "fe-image1",
.caps = V4L2_CAP_VIDEO_CAPTURE,
.pad_flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = FE_OUTPUT1_PAD
},
[FE_STATS] = {
.name = "fe-stats",
.caps = V4L2_CAP_META_CAPTURE,
.pad_flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = FE_STATS_PAD
},
[FE_CONFIG] = {
.name = "fe-config",
.caps = V4L2_CAP_META_OUTPUT,
.pad_flags = MEDIA_PAD_FL_SOURCE | MEDIA_PAD_FL_MUST_CONNECT,
.link_pad = FE_CONFIG_PAD
},
};
#define is_fe_node(node) (((node)->id) >= FE_OUT0)
#define is_csi2_node(node) (!is_fe_node(node))
#define node_supports_image_output(node) \
(node_desc[(node)->id].caps & V4L2_CAP_VIDEO_CAPTURE)
#define node_supports_meta_output(node) \
(node_desc[(node)->id].caps & V4L2_CAP_META_CAPTURE)
#define node_supports_image_input(node) \
(node_desc[(node)->id].caps & V4L2_CAP_VIDEO_OUTPUT)
#define node_supports_meta_input(node) \
(node_desc[(node)->id].caps & V4L2_CAP_META_OUTPUT)
#define node_supports_image(node) \
(node_supports_image_output(node) || node_supports_image_input(node))
#define node_supports_meta(node) \
(node_supports_meta_output(node) || node_supports_meta_input(node))
#define is_image_output_node(node) \
((node)->buffer_queue.type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
#define is_image_input_node(node) \
((node)->buffer_queue.type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
#define is_image_node(node) \
(is_image_output_node(node) || is_image_input_node(node))
#define is_meta_output_node(node) \
((node)->buffer_queue.type == V4L2_BUF_TYPE_META_CAPTURE)
#define is_meta_input_node(node) \
((node)->buffer_queue.type == V4L2_BUF_TYPE_META_OUTPUT)
#define is_meta_node(node) \
(is_meta_output_node(node) || is_meta_input_node(node))
/* To track state across all nodes. */
#define NODE_REGISTERED BIT(0)
#define NODE_ENABLED BIT(1)
#define NODE_STREAMING BIT(2)
#define FS_INT BIT(3)
#define FE_INT BIT(4)
#define NUM_STATES 5
struct cfe_buffer {
struct vb2_v4l2_buffer vb;
struct list_head list;
};
struct cfe_config_buffer {
struct cfe_buffer buf;
struct pisp_fe_config config;
};
static inline struct cfe_buffer *to_cfe_buffer(struct vb2_buffer *vb)
{
return container_of(vb, struct cfe_buffer, vb.vb2_buf);
}
static inline
struct cfe_config_buffer *to_cfe_config_buffer(struct cfe_buffer *buf)
{
return container_of(buf, struct cfe_config_buffer, buf);
}
struct cfe_node {
/* Node id */
enum node_ids id;
/* Pointer pointing to current v4l2_buffer */
struct cfe_buffer *cur_frm;
/* Pointer pointing to next v4l2_buffer */
struct cfe_buffer *next_frm;
/* Used to store current pixel format */
struct v4l2_format vid_fmt;
/* Used to store current meta format */
struct v4l2_format meta_fmt;
/* Buffer queue used in video-buf */
struct vb2_queue buffer_queue;
/* Queue of filled frames */
struct list_head dma_queue;
/* lock used to access this structure */
struct mutex lock;
/* Identifies video device for this channel */
struct video_device video_dev;
/* Pointer to the parent handle */
struct cfe_device *cfe;
/* Media pad for this node */
struct media_pad pad;
/* Frame-start counter */
unsigned int fs_count;
/* Timestamp of the current buffer */
u64 ts;
};
struct cfe_device {
struct dentry *debugfs;
struct kref kref;
/* peripheral base address */
void __iomem *mipi_cfg_base;
struct clk *clk;
/* V4l2 device */
struct v4l2_device v4l2_dev;
struct media_device mdev;
struct media_pipeline pipe;
/* IRQ lock for node state and DMA queues */
spinlock_t state_lock;
bool job_ready;
bool job_queued;
/* parent device */
struct platform_device *pdev;
/* subdevice async Notifier */
struct v4l2_async_notifier notifier;
/* Source sub device */
struct v4l2_subdev *source_sd;
/* Source subdev's pad */
u32 source_pad;
struct cfe_node node[NUM_NODES];
DECLARE_BITMAP(node_flags, NUM_STATES * NUM_NODES);
struct csi2_device csi2;
struct pisp_fe_device fe;
int fe_csi2_channel;
/* Mask of enabled streams */
u64 streams_mask;
};
static inline bool is_fe_enabled(struct cfe_device *cfe)
{
return cfe->fe_csi2_channel != -1;
}
static inline struct cfe_device *to_cfe_device(struct v4l2_device *v4l2_dev)
{
return container_of(v4l2_dev, struct cfe_device, v4l2_dev);
}
static inline u32 cfg_reg_read(struct cfe_device *cfe, u32 offset)
{
return readl(cfe->mipi_cfg_base + offset);
}
static inline void cfg_reg_write(struct cfe_device *cfe, u32 offset, u32 val)
{
writel(val, cfe->mipi_cfg_base + offset);
}
static bool check_state(struct cfe_device *cfe, unsigned long state,
unsigned int node_id)
{
unsigned long bit;
for_each_set_bit(bit, &state, sizeof(state)) {
if (!test_bit(bit + (node_id * NUM_STATES), cfe->node_flags))
return false;
}
return true;
}
static void set_state(struct cfe_device *cfe, unsigned long state,
unsigned int node_id)
{
unsigned long bit;
for_each_set_bit(bit, &state, sizeof(state))
set_bit(bit + (node_id * NUM_STATES), cfe->node_flags);
}
static void clear_state(struct cfe_device *cfe, unsigned long state,
unsigned int node_id)
{
unsigned long bit;
for_each_set_bit(bit, &state, sizeof(state))
clear_bit(bit + (node_id * NUM_STATES), cfe->node_flags);
}
static bool test_any_node(struct cfe_device *cfe, unsigned long cond)
{
for (unsigned int i = 0; i < NUM_NODES; i++) {
if (check_state(cfe, cond, i))
return true;
}
return false;
}
static bool test_all_nodes(struct cfe_device *cfe, unsigned long precond,
unsigned long cond)
{
for (unsigned int i = 0; i < NUM_NODES; i++) {
if (check_state(cfe, precond, i)) {
if (!check_state(cfe, cond, i))
return false;
}
}
return true;
}
static int mipi_cfg_regs_show(struct seq_file *s, void *data)
{
struct cfe_device *cfe = s->private;
int ret;
ret = pm_runtime_resume_and_get(&cfe->pdev->dev);
if (ret)
return ret;
#define DUMP(reg) seq_printf(s, #reg " \t0x%08x\n", cfg_reg_read(cfe, reg))
DUMP(MIPICFG_CFG);
DUMP(MIPICFG_INTR);
DUMP(MIPICFG_INTE);
DUMP(MIPICFG_INTF);
DUMP(MIPICFG_INTS);
#undef DUMP
pm_runtime_put(&cfe->pdev->dev);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(mipi_cfg_regs);
/* Format setup functions */
const struct cfe_fmt *find_format_by_code(u32 code)
{
for (unsigned int i = 0; i < ARRAY_SIZE(formats); i++) {
if (formats[i].code == code)
return &formats[i];
}
return NULL;
}
const struct cfe_fmt *find_format_by_pix(u32 pixelformat)
{
for (unsigned int i = 0; i < ARRAY_SIZE(formats); i++) {
if (formats[i].fourcc == pixelformat)
return &formats[i];
}
return NULL;
}
static const struct cfe_fmt *find_format_by_code_and_fourcc(u32 code,
u32 fourcc)
{
for (unsigned int i = 0; i < ARRAY_SIZE(formats); i++) {
if (formats[i].code == code && formats[i].fourcc == fourcc)
return &formats[i];
}
return NULL;
}
/*
* Given the mbus code, find the 16 bit remapped code. Returns 0 if no remap
* possible.
*/
u32 cfe_find_16bit_code(u32 code)
{
const struct cfe_fmt *cfe_fmt;
cfe_fmt = find_format_by_code(code);
if (!cfe_fmt || !cfe_fmt->remap[CFE_REMAP_16BIT])
return 0;
cfe_fmt = find_format_by_pix(cfe_fmt->remap[CFE_REMAP_16BIT]);
if (!cfe_fmt)
return 0;
return cfe_fmt->code;
}
/*
* Given the mbus code, find the 8 bit compressed code. Returns 0 if no remap
* possible.
*/
u32 cfe_find_compressed_code(u32 code)
{
const struct cfe_fmt *cfe_fmt;
cfe_fmt = find_format_by_code(code);
if (!cfe_fmt || !cfe_fmt->remap[CFE_REMAP_COMPRESSED])
return 0;
cfe_fmt = find_format_by_pix(cfe_fmt->remap[CFE_REMAP_COMPRESSED]);
if (!cfe_fmt)
return 0;
return cfe_fmt->code;
}
static void cfe_calc_vid_format_size_bpl(struct cfe_device *cfe,
const struct cfe_fmt *fmt,
struct v4l2_format *f)
{
unsigned int min_bytesperline;
v4l_bound_align_image(&f->fmt.pix.width, MIN_WIDTH, MAX_WIDTH, 2,
&f->fmt.pix.height, MIN_HEIGHT, MAX_HEIGHT, 0, 0);
min_bytesperline =
ALIGN((f->fmt.pix.width * fmt->depth) >> 3, BPL_ALIGNMENT);
if (f->fmt.pix.bytesperline > min_bytesperline &&
f->fmt.pix.bytesperline <= MAX_BYTESPERLINE)
f->fmt.pix.bytesperline =
ALIGN(f->fmt.pix.bytesperline, BPL_ALIGNMENT);
else
f->fmt.pix.bytesperline = min_bytesperline;
f->fmt.pix.sizeimage = f->fmt.pix.height * f->fmt.pix.bytesperline;
cfe_dbg(cfe, "%s: %p4cc size: %ux%u bpl:%u img_size:%u\n", __func__,
&f->fmt.pix.pixelformat, f->fmt.pix.width, f->fmt.pix.height,
f->fmt.pix.bytesperline, f->fmt.pix.sizeimage);
}
static void cfe_calc_meta_format_size_bpl(struct cfe_device *cfe,
const struct cfe_fmt *fmt,
struct v4l2_format *f)
{
v4l_bound_align_image(&f->fmt.meta.width, MIN_META_WIDTH, MAX_WIDTH, 2,
&f->fmt.meta.height, MIN_META_HEIGHT, MAX_HEIGHT,
0, 0);
f->fmt.meta.bytesperline = (f->fmt.meta.width * fmt->depth) >> 3;
f->fmt.meta.buffersize = f->fmt.meta.height * f->fmt.pix.bytesperline;
cfe_dbg(cfe, "%s: %p4cc size: %ux%u bpl:%u buf_size:%u\n", __func__,
&f->fmt.meta.dataformat, f->fmt.meta.width, f->fmt.meta.height,
f->fmt.meta.bytesperline, f->fmt.meta.buffersize);
}
static void cfe_schedule_next_csi2_job(struct cfe_device *cfe)
{
struct cfe_buffer *buf;
dma_addr_t addr;
for (unsigned int i = 0; i < CSI2_NUM_CHANNELS; i++) {
struct cfe_node *node = &cfe->node[i];
unsigned int stride, size;
if (!check_state(cfe, NODE_STREAMING, i))
continue;
buf = list_first_entry(&node->dma_queue, struct cfe_buffer,
list);
node->next_frm = buf;
list_del(&buf->list);
trace_cfe_csi2_schedule(node->id, &buf->vb.vb2_buf);
if (is_meta_node(node)) {
size = node->meta_fmt.fmt.meta.buffersize;
/* We use CSI2_CH_CTRL_PACK_BYTES, so stride == 0 */
stride = 0;
} else {
size = node->vid_fmt.fmt.pix.sizeimage;
stride = node->vid_fmt.fmt.pix.bytesperline;
}
addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
csi2_set_buffer(&cfe->csi2, node->id, addr, stride, size);
}
}
static void cfe_schedule_next_pisp_job(struct cfe_device *cfe)
{
struct vb2_buffer *vb2_bufs[FE_NUM_PADS] = { 0 };
struct cfe_config_buffer *config_buf;
struct cfe_buffer *buf;
for (unsigned int i = CSI2_NUM_CHANNELS; i < NUM_NODES; i++) {
struct cfe_node *node = &cfe->node[i];
if (!check_state(cfe, NODE_STREAMING, i))
continue;
buf = list_first_entry(&node->dma_queue, struct cfe_buffer,
list);
trace_cfe_fe_schedule(node->id, &buf->vb.vb2_buf);
node->next_frm = buf;
vb2_bufs[node_desc[i].link_pad] = &buf->vb.vb2_buf;
list_del(&buf->list);
}
config_buf = to_cfe_config_buffer(cfe->node[FE_CONFIG].next_frm);
pisp_fe_submit_job(&cfe->fe, vb2_bufs, &config_buf->config);
}
static bool cfe_check_job_ready(struct cfe_device *cfe)
{
for (unsigned int i = 0; i < NUM_NODES; i++) {
struct cfe_node *node = &cfe->node[i];
if (!check_state(cfe, NODE_ENABLED, i))
continue;
if (list_empty(&node->dma_queue))
return false;
}
return true;
}
static void cfe_prepare_next_job(struct cfe_device *cfe)
{
trace_cfe_prepare_next_job(is_fe_enabled(cfe));
cfe->job_queued = true;
cfe_schedule_next_csi2_job(cfe);
if (is_fe_enabled(cfe))
cfe_schedule_next_pisp_job(cfe);
/* Flag if another job is ready after this. */
cfe->job_ready = cfe_check_job_ready(cfe);
}
static void cfe_process_buffer_complete(struct cfe_node *node,
enum vb2_buffer_state state)
{
trace_cfe_buffer_complete(node->id, &node->cur_frm->vb);
node->cur_frm->vb.sequence = node->fs_count - 1;
vb2_buffer_done(&node->cur_frm->vb.vb2_buf, state);
}
static void cfe_queue_event_sof(struct cfe_node *node)
{
struct v4l2_event event = {
.type = V4L2_EVENT_FRAME_SYNC,
.u.frame_sync.frame_sequence = node->fs_count - 1,
};
v4l2_event_queue(&node->video_dev, &event);
}
static void cfe_sof_isr(struct cfe_node *node)
{
struct cfe_device *cfe = node->cfe;
bool matching_fs = true;
trace_cfe_frame_start(node->id, node->fs_count);
/*
* If the sensor is producing unexpected frame event ordering over a
* sustained period of time, guard against the possibility of coming
* here and orphaning the cur_frm if it's not been dequeued already.
* Unfortunately, there is not enough hardware state to tell if this
* may have occurred.
*/
if (WARN(node->cur_frm, "%s: [%s] Orphaned frame at seq %u\n",
__func__, node_desc[node->id].name, node->fs_count))
cfe_process_buffer_complete(node, VB2_BUF_STATE_ERROR);
node->cur_frm = node->next_frm;
node->next_frm = NULL;
node->fs_count++;
node->ts = ktime_get_ns();
for (unsigned int i = 0; i < NUM_NODES; i++) {
if (!check_state(cfe, NODE_STREAMING, i) || i == node->id)
continue;
/*
* This checks if any other node has seen a FS. If yes, use the
* same timestamp, eventually across all node buffers.
*/
if (cfe->node[i].fs_count >= node->fs_count)
node->ts = cfe->node[i].ts;
/*
* This checks if all other node have seen a matching FS. If
* yes, we can flag another job to be queued.
*/
if (matching_fs && cfe->node[i].fs_count != node->fs_count)
matching_fs = false;
}
if (matching_fs)
cfe->job_queued = false;
if (node->cur_frm)
node->cur_frm->vb.vb2_buf.timestamp = node->ts;
set_state(cfe, FS_INT, node->id);
clear_state(cfe, FE_INT, node->id);
if (is_image_output_node(node))
cfe_queue_event_sof(node);
}
static void cfe_eof_isr(struct cfe_node *node)
{
struct cfe_device *cfe = node->cfe;
trace_cfe_frame_end(node->id, node->fs_count - 1);
if (node->cur_frm)
cfe_process_buffer_complete(node, VB2_BUF_STATE_DONE);
node->cur_frm = NULL;
set_state(cfe, FE_INT, node->id);
clear_state(cfe, FS_INT, node->id);
}
static irqreturn_t cfe_isr(int irq, void *dev)
{
struct cfe_device *cfe = dev;
bool sof[NUM_NODES] = { 0 }, eof[NUM_NODES] = { 0 };
u32 sts;
sts = cfg_reg_read(cfe, MIPICFG_INTS);
if (sts & MIPICFG_INT_CSI_DMA)
csi2_isr(&cfe->csi2, sof, eof);
if (sts & MIPICFG_INT_PISP_FE)
pisp_fe_isr(&cfe->fe, sof + CSI2_NUM_CHANNELS,
eof + CSI2_NUM_CHANNELS);
spin_lock(&cfe->state_lock);
for (unsigned int i = 0; i < NUM_NODES; i++) {
struct cfe_node *node = &cfe->node[i];
/*
* The check_state(NODE_STREAMING) is to ensure we do not loop
* over the CSI2_CHx nodes when the FE is active since they
* generate interrupts even though the node is not streaming.
*/
if (!check_state(cfe, NODE_STREAMING, i) || !(sof[i] || eof[i]))
continue;
/*
* There are 3 cases where we could get FS + FE_ACK at
* the same time:
* 1) FE of the current frame, and FS of the next frame.
* 2) FS + FE of the same frame.
* 3) FE of the current frame, and FS + FE of the next
* frame. To handle this, see the sof handler below.
*
* (1) is handled implicitly by the ordering of the FE and FS
* handlers below.
*/
if (eof[i]) {
/*
* The condition below tests for (2). Run the FS handler
* first before the FE handler, both for the current
* frame.
*/
if (sof[i] && !check_state(cfe, FS_INT, i)) {
cfe_sof_isr(node);
sof[i] = false;
}
cfe_eof_isr(node);
}
if (sof[i]) {
/*
* The condition below tests for (3). In such cases, we
* come in here with FS flag set in the node state from
* the previous frame since it only gets cleared in
* cfe_eof_isr(). Handle the FE for the previous
* frame first before the FS handler for the current
* frame.
*/
if (check_state(cfe, FS_INT, node->id) &&
!check_state(cfe, FE_INT, node->id)) {
cfe_dbg(cfe, "%s: [%s] Handling missing previous FE interrupt\n",
__func__, node_desc[node->id].name);
cfe_eof_isr(node);
}
cfe_sof_isr(node);
}
if (!cfe->job_queued && cfe->job_ready)
cfe_prepare_next_job(cfe);
}
spin_unlock(&cfe->state_lock);
return IRQ_HANDLED;
}
/*
* Stream helpers
*/
static int cfe_get_vc_dt_fallback(struct cfe_device *cfe, u8 *vc, u8 *dt)
{
struct v4l2_subdev_state *state;
struct v4l2_mbus_framefmt *fmt;
const struct cfe_fmt *cfe_fmt;
state = v4l2_subdev_get_locked_active_state(&cfe->csi2.sd);
fmt = v4l2_subdev_state_get_format(state, CSI2_PAD_SINK, 0);
if (!fmt)
return -EINVAL;
cfe_fmt = find_format_by_code(fmt->code);
if (!cfe_fmt)
return -EINVAL;
*vc = 0;
*dt = cfe_fmt->csi_dt;
return 0;
}
static int cfe_get_vc_dt(struct cfe_device *cfe, unsigned int channel, u8 *vc,
u8 *dt)
{
struct v4l2_mbus_frame_desc remote_desc;
struct v4l2_subdev_state *state;
u32 sink_stream;
unsigned int i;
int ret;
state = v4l2_subdev_get_locked_active_state(&cfe->csi2.sd);
ret = v4l2_subdev_routing_find_opposite_end(&state->routing,
CSI2_PAD_FIRST_SOURCE + channel, 0, NULL, &sink_stream);
if (ret)
return ret;
ret = v4l2_subdev_call(cfe->source_sd, pad, get_frame_desc,
cfe->source_pad, &remote_desc);
if (ret == -ENOIOCTLCMD) {
cfe_dbg(cfe, "source does not support get_frame_desc, use fallback\n");
return cfe_get_vc_dt_fallback(cfe, vc, dt);
} else if (ret) {
cfe_err(cfe, "Failed to get frame descriptor\n");
return ret;
}
if (remote_desc.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) {
cfe_err(cfe, "Frame descriptor does not describe CSI-2 link");
return -EINVAL;
}
for (i = 0; i < remote_desc.num_entries; i++) {
if (remote_desc.entry[i].stream == sink_stream)
break;
}
if (i == remote_desc.num_entries) {
cfe_err(cfe, "Stream %u not found in remote frame desc\n",
sink_stream);
return -EINVAL;
}
*vc = remote_desc.entry[i].bus.csi2.vc;
*dt = remote_desc.entry[i].bus.csi2.dt;
return 0;
}
static int cfe_start_channel(struct cfe_node *node)
{
struct cfe_device *cfe = node->cfe;
struct v4l2_subdev_state *state;
struct v4l2_mbus_framefmt *source_fmt;
const struct cfe_fmt *fmt;
unsigned long flags;
bool start_fe;
int ret;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
start_fe = is_fe_enabled(cfe) &&
test_all_nodes(cfe, NODE_ENABLED, NODE_STREAMING);
state = v4l2_subdev_get_locked_active_state(&cfe->csi2.sd);
if (start_fe) {
unsigned int width, height;
u8 vc, dt;
cfe_dbg(cfe, "%s: %s using csi2 channel %d\n", __func__,
node_desc[FE_OUT0].name, cfe->fe_csi2_channel);
ret = cfe_get_vc_dt(cfe, cfe->fe_csi2_channel, &vc, &dt);
if (ret)
return ret;
source_fmt = v4l2_subdev_state_get_format(state,
node_desc[cfe->fe_csi2_channel].link_pad);
fmt = find_format_by_code(source_fmt->code);
width = source_fmt->width;
height = source_fmt->height;
/* Must have a valid CSI2 datatype. */
WARN_ON(!fmt->csi_dt);
/*
* Start the associated CSI2 Channel as well.
*
* Must write to the ADDR register to latch the ctrl values
* even if we are connected to the front end. Once running,
* this is handled by the CSI2 AUTO_ARM mode.
*/
csi2_start_channel(&cfe->csi2, cfe->fe_csi2_channel,
CSI2_MODE_FE_STREAMING,
true, false, width, height, vc, dt);
csi2_set_buffer(&cfe->csi2, cfe->fe_csi2_channel, 0, 0, -1);
pisp_fe_start(&cfe->fe);
}
if (is_csi2_node(node)) {
unsigned int width = 0, height = 0;
u8 vc, dt;
ret = cfe_get_vc_dt(cfe, node->id, &vc, &dt);
if (ret) {
if (start_fe) {
csi2_stop_channel(&cfe->csi2,
cfe->fe_csi2_channel);
pisp_fe_stop(&cfe->fe);
}
return ret;
}
u32 mode = CSI2_MODE_NORMAL;
source_fmt = v4l2_subdev_state_get_format(state,
node_desc[node->id].link_pad);
fmt = find_format_by_code(source_fmt->code);
/* Must have a valid CSI2 datatype. */
WARN_ON(!fmt->csi_dt);
if (is_image_output_node(node)) {
u32 pixfmt;
width = source_fmt->width;
height = source_fmt->height;
pixfmt = node->vid_fmt.fmt.pix.pixelformat;
if (pixfmt == fmt->remap[CFE_REMAP_16BIT]) {
mode = CSI2_MODE_REMAP;
} else if (pixfmt == fmt->remap[CFE_REMAP_COMPRESSED]) {
mode = CSI2_MODE_COMPRESSED;
csi2_set_compression(&cfe->csi2, node->id,
CSI2_COMPRESSION_DELTA, 0,
0);
}
}
/* Unconditionally start this CSI2 channel. */
csi2_start_channel(&cfe->csi2, node->id,
mode,
/* Auto arm */
false,
/* Pack bytes */
is_meta_node(node) ? true : false,
width, height, vc, dt);
}
spin_lock_irqsave(&cfe->state_lock, flags);
if (cfe->job_ready && test_all_nodes(cfe, NODE_ENABLED, NODE_STREAMING))
cfe_prepare_next_job(cfe);
spin_unlock_irqrestore(&cfe->state_lock, flags);
return 0;
}
static void cfe_stop_channel(struct cfe_node *node, bool fe_stop)
{
struct cfe_device *cfe = node->cfe;
cfe_dbg(cfe, "%s: [%s] fe_stop %u\n", __func__,
node_desc[node->id].name, fe_stop);
if (fe_stop) {
csi2_stop_channel(&cfe->csi2, cfe->fe_csi2_channel);
pisp_fe_stop(&cfe->fe);
}
if (is_csi2_node(node))
csi2_stop_channel(&cfe->csi2, node->id);
}
static void cfe_return_buffers(struct cfe_node *node,
enum vb2_buffer_state state)
{
struct cfe_device *cfe = node->cfe;
struct cfe_buffer *buf, *tmp;
unsigned long flags;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
spin_lock_irqsave(&cfe->state_lock, flags);
list_for_each_entry_safe(buf, tmp, &node->dma_queue, list) {
list_del(&buf->list);
trace_cfe_return_buffer(node->id, buf->vb.vb2_buf.index, 2);
vb2_buffer_done(&buf->vb.vb2_buf, state);
}
if (node->cur_frm) {
trace_cfe_return_buffer(node->id,
node->cur_frm->vb.vb2_buf.index, 0);
vb2_buffer_done(&node->cur_frm->vb.vb2_buf, state);
}
if (node->next_frm && node->cur_frm != node->next_frm) {
trace_cfe_return_buffer(node->id,
node->next_frm->vb.vb2_buf.index, 1);
vb2_buffer_done(&node->next_frm->vb.vb2_buf, state);
}
node->cur_frm = NULL;
node->next_frm = NULL;
spin_unlock_irqrestore(&cfe->state_lock, flags);
}
/*
* vb2 ops
*/
static int cfe_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers,
unsigned int *nplanes, unsigned int sizes[],
struct device *alloc_devs[])
{
struct cfe_node *node = vb2_get_drv_priv(vq);
struct cfe_device *cfe = node->cfe;
unsigned int size = is_image_node(node) ?
node->vid_fmt.fmt.pix.sizeimage :
node->meta_fmt.fmt.meta.buffersize;
cfe_dbg(cfe, "%s: [%s] type:%u\n", __func__, node_desc[node->id].name,
node->buffer_queue.type);
if (vq->max_num_buffers + *nbuffers < 3)
*nbuffers = 3 - vq->max_num_buffers;
if (*nplanes) {
if (sizes[0] < size) {
cfe_err(cfe, "sizes[0] %i < size %u\n", sizes[0], size);
return -EINVAL;
}
size = sizes[0];
}
*nplanes = 1;
sizes[0] = size;
return 0;
}
static int cfe_buffer_prepare(struct vb2_buffer *vb)
{
struct cfe_node *node = vb2_get_drv_priv(vb->vb2_queue);
struct cfe_device *cfe = node->cfe;
struct cfe_buffer *buf = to_cfe_buffer(vb);
unsigned long size;
trace_cfe_buffer_prepare(node->id, vb);
size = is_image_node(node) ? node->vid_fmt.fmt.pix.sizeimage :
node->meta_fmt.fmt.meta.buffersize;
if (vb2_plane_size(vb, 0) < size) {
cfe_err(cfe, "data will not fit into plane (%lu < %lu)\n",
vb2_plane_size(vb, 0), size);
return -EINVAL;
}
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size);
if (node->id == FE_CONFIG) {
struct cfe_config_buffer *b = to_cfe_config_buffer(buf);
void *addr = vb2_plane_vaddr(vb, 0);
memcpy(&b->config, addr, sizeof(struct pisp_fe_config));
return pisp_fe_validate_config(&cfe->fe, &b->config,
&cfe->node[FE_OUT0].vid_fmt,
&cfe->node[FE_OUT1].vid_fmt);
}
return 0;
}
static void cfe_buffer_queue(struct vb2_buffer *vb)
{
struct cfe_node *node = vb2_get_drv_priv(vb->vb2_queue);
struct cfe_device *cfe = node->cfe;
struct cfe_buffer *buf = to_cfe_buffer(vb);
unsigned long flags;
bool schedule_now;
spin_lock_irqsave(&cfe->state_lock, flags);
list_add_tail(&buf->list, &node->dma_queue);
if (!cfe->job_ready)
cfe->job_ready = cfe_check_job_ready(cfe);
schedule_now = !cfe->job_queued && cfe->job_ready &&
test_all_nodes(cfe, NODE_ENABLED, NODE_STREAMING);
trace_cfe_buffer_queue(node->id, vb, schedule_now);
if (schedule_now)
cfe_prepare_next_job(cfe);
spin_unlock_irqrestore(&cfe->state_lock, flags);
}
static s64 cfe_get_source_link_freq(struct cfe_device *cfe)
{
struct v4l2_subdev_state *state;
s64 link_freq;
u32 bpp;
state = v4l2_subdev_get_locked_active_state(&cfe->csi2.sd);
/*
* v4l2_get_link_freq() uses V4L2_CID_LINK_FREQ first, and falls back
* to V4L2_CID_PIXEL_RATE if V4L2_CID_LINK_FREQ is not available.
*
* With multistream input there is no single pixel rate, and thus we
* cannot use V4L2_CID_PIXEL_RATE, so we pass 0 as the bpp which
* causes v4l2_get_link_freq() to return an error if it falls back to
* V4L2_CID_PIXEL_RATE.
*/
if (state->routing.num_routes == 1) {
struct v4l2_subdev_route *route = &state->routing.routes[0];
struct v4l2_mbus_framefmt *source_fmt;
const struct cfe_fmt *fmt;
source_fmt = v4l2_subdev_state_get_format(state,
route->sink_pad,
route->sink_stream);
fmt = find_format_by_code(source_fmt->code);
if (!fmt)
return -EINVAL;
bpp = fmt->depth;
} else {
bpp = 0;
}
link_freq = v4l2_get_link_freq(cfe->source_sd->ctrl_handler, bpp,
2 * cfe->csi2.dphy.active_lanes);
if (link_freq < 0)
cfe_err(cfe, "failed to get link freq for subdev '%s'\n",
cfe->source_sd->name);
return link_freq;
}
static int cfe_start_streaming(struct vb2_queue *vq, unsigned int count)
{
struct v4l2_mbus_config mbus_config = { 0 };
struct cfe_node *node = vb2_get_drv_priv(vq);
struct cfe_device *cfe = node->cfe;
struct v4l2_subdev_state *state;
struct v4l2_subdev_route *route;
s64 link_freq;
int ret;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
if (!check_state(cfe, NODE_ENABLED, node->id)) {
cfe_err(cfe, "%s node link is not enabled.\n",
node_desc[node->id].name);
ret = -EINVAL;
goto err_streaming;
}
ret = pm_runtime_resume_and_get(&cfe->pdev->dev);
if (ret < 0) {
cfe_err(cfe, "pm_runtime_resume_and_get failed\n");
goto err_streaming;
}
/* When using the Frontend, we must enable the FE_CONFIG node. */
if (is_fe_enabled(cfe) &&
!check_state(cfe, NODE_ENABLED, cfe->node[FE_CONFIG].id)) {
cfe_err(cfe, "FE enabled, but FE_CONFIG node is not\n");
ret = -EINVAL;
goto err_pm_put;
}
ret = media_pipeline_start(&node->pad, &cfe->pipe);
if (ret < 0) {
cfe_err(cfe, "Failed to start media pipeline: %d\n", ret);
goto err_pm_put;
}
state = v4l2_subdev_lock_and_get_active_state(&cfe->csi2.sd);
clear_state(cfe, FS_INT | FE_INT, node->id);
set_state(cfe, NODE_STREAMING, node->id);
node->fs_count = 0;
ret = cfe_start_channel(node);
if (ret)
goto err_unlock_state;
if (!test_all_nodes(cfe, NODE_ENABLED, NODE_STREAMING)) {
cfe_dbg(cfe, "Streaming on hold, as all nodes are not set to streaming yet\n");
v4l2_subdev_unlock_state(state);
return 0;
}
cfg_reg_write(cfe, MIPICFG_CFG, MIPICFG_CFG_SEL_CSI);
cfg_reg_write(cfe, MIPICFG_INTE,
MIPICFG_INT_CSI_DMA | MIPICFG_INT_PISP_FE);
ret = v4l2_subdev_call(cfe->source_sd, pad, get_mbus_config, 0,
&mbus_config);
if (ret < 0 && ret != -ENOIOCTLCMD) {
cfe_err(cfe, "g_mbus_config failed\n");
goto err_clear_inte;
}
cfe->csi2.dphy.active_lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
if (!cfe->csi2.dphy.active_lanes)
cfe->csi2.dphy.active_lanes = cfe->csi2.dphy.max_lanes;
if (cfe->csi2.dphy.active_lanes > cfe->csi2.dphy.max_lanes) {
cfe_err(cfe, "Device has requested %u data lanes, which is >%u configured in DT\n",
cfe->csi2.dphy.active_lanes, cfe->csi2.dphy.max_lanes);
ret = -EINVAL;
goto err_clear_inte;
}
link_freq = cfe_get_source_link_freq(cfe);
if (link_freq < 0)
goto err_clear_inte;
cfe->csi2.dphy.dphy_rate = div_s64(link_freq * 2, 1000000);
csi2_open_rx(&cfe->csi2);
cfe->streams_mask = 0;
for_each_active_route(&state->routing, route)
cfe->streams_mask |= BIT_ULL(route->sink_stream);
ret = v4l2_subdev_enable_streams(cfe->source_sd, cfe->source_pad,
cfe->streams_mask);
if (ret) {
cfe_err(cfe, "stream on failed in subdev\n");
goto err_disable_cfe;
}
cfe_dbg(cfe, "Streaming enabled\n");
v4l2_subdev_unlock_state(state);
return 0;
err_disable_cfe:
csi2_close_rx(&cfe->csi2);
err_clear_inte:
cfg_reg_write(cfe, MIPICFG_INTE, 0);
cfe_stop_channel(node,
is_fe_enabled(cfe) && test_all_nodes(cfe, NODE_ENABLED,
NODE_STREAMING));
err_unlock_state:
v4l2_subdev_unlock_state(state);
media_pipeline_stop(&node->pad);
err_pm_put:
pm_runtime_put(&cfe->pdev->dev);
err_streaming:
cfe_return_buffers(node, VB2_BUF_STATE_QUEUED);
clear_state(cfe, NODE_STREAMING, node->id);
return ret;
}
static void cfe_stop_streaming(struct vb2_queue *vq)
{
struct cfe_node *node = vb2_get_drv_priv(vq);
struct cfe_device *cfe = node->cfe;
unsigned long flags;
bool fe_stop;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
spin_lock_irqsave(&cfe->state_lock, flags);
fe_stop = is_fe_enabled(cfe) &&
test_all_nodes(cfe, NODE_ENABLED, NODE_STREAMING);
cfe->job_ready = false;
clear_state(cfe, NODE_STREAMING, node->id);
spin_unlock_irqrestore(&cfe->state_lock, flags);
cfe_stop_channel(node, fe_stop);
if (!test_any_node(cfe, NODE_STREAMING)) {
struct v4l2_subdev_state *state;
int ret;
state = v4l2_subdev_lock_and_get_active_state(&cfe->csi2.sd);
ret = v4l2_subdev_disable_streams(cfe->source_sd,
cfe->source_pad,
cfe->streams_mask);
if (ret)
cfe_err(cfe, "stream disable failed in subdev\n");
v4l2_subdev_unlock_state(state);
csi2_close_rx(&cfe->csi2);
cfg_reg_write(cfe, MIPICFG_INTE, 0);
cfe_dbg(cfe, "%s: Streaming disabled\n", __func__);
}
media_pipeline_stop(&node->pad);
/* Clear all queued buffers for the node */
cfe_return_buffers(node, VB2_BUF_STATE_ERROR);
pm_runtime_put(&cfe->pdev->dev);
}
static const struct vb2_ops cfe_video_qops = {
.wait_prepare = vb2_ops_wait_prepare,
.wait_finish = vb2_ops_wait_finish,
.queue_setup = cfe_queue_setup,
.buf_prepare = cfe_buffer_prepare,
.buf_queue = cfe_buffer_queue,
.start_streaming = cfe_start_streaming,
.stop_streaming = cfe_stop_streaming,
};
/*
* v4l2 ioctl ops
*/
static int cfe_querycap(struct file *file, void *priv,
struct v4l2_capability *cap)
{
strscpy(cap->driver, CFE_MODULE_NAME, sizeof(cap->driver));
strscpy(cap->card, CFE_MODULE_NAME, sizeof(cap->card));
cap->capabilities |= V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE |
V4L2_CAP_META_OUTPUT;
return 0;
}
static int cfe_enum_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
unsigned int i, j;
if (!node_supports_image_output(node))
return -EINVAL;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
for (i = 0, j = 0; i < ARRAY_SIZE(formats); i++) {
if (f->mbus_code && formats[i].code != f->mbus_code)
continue;
if (formats[i].flags & CFE_FORMAT_FLAG_META_OUT ||
formats[i].flags & CFE_FORMAT_FLAG_META_CAP)
continue;
if (is_fe_node(node) &&
!(formats[i].flags & CFE_FORMAT_FLAG_FE_OUT))
continue;
if (j == f->index) {
f->pixelformat = formats[i].fourcc;
f->type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
return 0;
}
j++;
}
return -EINVAL;
}
static int cfe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
{
struct cfe_node *node = video_drvdata(file);
if (!node_supports_image(node))
return -EINVAL;
*f = node->vid_fmt;
return 0;
}
static int cfe_validate_fmt_vid_cap(struct cfe_node *node,
struct v4l2_format *f)
{
struct cfe_device *cfe = node->cfe;
const struct cfe_fmt *fmt;
cfe_dbg(cfe, "%s: [%s] %ux%u, V4L2 pix %p4cc\n", __func__,
node_desc[node->id].name, f->fmt.pix.width, f->fmt.pix.height,
&f->fmt.pix.pixelformat);
if (!node_supports_image_output(node))
return -EINVAL;
/*
* Default to a format that works for both CSI2 and FE.
*/
fmt = find_format_by_pix(f->fmt.pix.pixelformat);
if (!fmt)
fmt = find_format_by_code(MEDIA_BUS_FMT_SBGGR10_1X10);
f->fmt.pix.pixelformat = fmt->fourcc;
if (is_fe_node(node) && fmt->remap[CFE_REMAP_16BIT]) {
f->fmt.pix.pixelformat = fmt->remap[CFE_REMAP_16BIT];
fmt = find_format_by_pix(f->fmt.pix.pixelformat);
}
f->fmt.pix.field = V4L2_FIELD_NONE;
cfe_calc_vid_format_size_bpl(cfe, fmt, f);
return 0;
}
static int cfe_s_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
struct vb2_queue *q = &node->buffer_queue;
int ret;
if (vb2_is_busy(q))
return -EBUSY;
ret = cfe_validate_fmt_vid_cap(node, f);
if (ret)
return ret;
node->vid_fmt = *f;
cfe_dbg(cfe, "%s: Set %ux%u, V4L2 pix %p4cc\n", __func__,
node->vid_fmt.fmt.pix.width, node->vid_fmt.fmt.pix.height,
&node->vid_fmt.fmt.pix.pixelformat);
return 0;
}
static int cfe_try_fmt_vid_cap(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
return cfe_validate_fmt_vid_cap(node, f);
}
static int cfe_enum_fmt_meta(struct file *file, void *priv,
struct v4l2_fmtdesc *f)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
if (!node_supports_meta(node))
return -EINVAL;
switch (node->id) {
case CSI2_CH0...CSI2_CH3:
f->flags = V4L2_FMT_FLAG_META_LINE_BASED;
switch (f->index) {
case 0:
f->pixelformat = V4L2_META_FMT_GENERIC_8;
return 0;
case 1:
f->pixelformat = V4L2_META_FMT_GENERIC_CSI2_10;
return 0;
case 2:
f->pixelformat = V4L2_META_FMT_GENERIC_CSI2_12;
return 0;
default:
return -EINVAL;
}
default:
break;
}
if (f->index != 0)
return -EINVAL;
switch (node->id) {
case FE_STATS:
f->pixelformat = V4L2_META_FMT_RPI_FE_STATS;
return 0;
case FE_CONFIG:
f->pixelformat = V4L2_META_FMT_RPI_FE_CFG;
return 0;
default:
return -EINVAL;
}
}
static int cfe_validate_fmt_meta(struct cfe_node *node, struct v4l2_format *f)
{
struct cfe_device *cfe = node->cfe;
const struct cfe_fmt *fmt;
switch (node->id) {
case CSI2_CH0...CSI2_CH3:
cfe_dbg(cfe, "%s: [%s] %ux%u, V4L2 meta %p4cc\n", __func__,
node_desc[node->id].name, f->fmt.meta.width,
f->fmt.meta.height, &f->fmt.meta.dataformat);
break;
case FE_STATS:
case FE_CONFIG:
cfe_dbg(cfe, "%s: [%s] %u bytes, V4L2 meta %p4cc\n", __func__,
node_desc[node->id].name, f->fmt.meta.buffersize,
&f->fmt.meta.dataformat);
break;
default:
return -EINVAL;
}
if (!node_supports_meta(node))
return -EINVAL;
switch (node->id) {
case CSI2_CH0...CSI2_CH3:
fmt = find_format_by_pix(f->fmt.meta.dataformat);
if (!fmt || !(fmt->flags & CFE_FORMAT_FLAG_META_CAP))
fmt = find_format_by_pix(V4L2_META_FMT_GENERIC_CSI2_10);
f->fmt.meta.dataformat = fmt->fourcc;
cfe_calc_meta_format_size_bpl(cfe, fmt, f);
return 0;
case FE_STATS:
f->fmt.meta.dataformat = V4L2_META_FMT_RPI_FE_STATS;
f->fmt.meta.buffersize = sizeof(struct pisp_statistics);
return 0;
case FE_CONFIG:
f->fmt.meta.dataformat = V4L2_META_FMT_RPI_FE_CFG;
f->fmt.meta.buffersize = sizeof(struct pisp_fe_config);
return 0;
default:
return -EINVAL;
}
}
static int cfe_g_fmt_meta(struct file *file, void *priv, struct v4l2_format *f)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
if (!node_supports_meta(node))
return -EINVAL;
*f = node->meta_fmt;
return 0;
}
static int cfe_s_fmt_meta(struct file *file, void *priv, struct v4l2_format *f)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
struct vb2_queue *q = &node->buffer_queue;
int ret;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
if (vb2_is_busy(q))
return -EBUSY;
if (!node_supports_meta(node))
return -EINVAL;
ret = cfe_validate_fmt_meta(node, f);
if (ret)
return ret;
node->meta_fmt = *f;
cfe_dbg(cfe, "%s: Set %p4cc\n", __func__,
&node->meta_fmt.fmt.meta.dataformat);
return 0;
}
static int cfe_try_fmt_meta(struct file *file, void *priv,
struct v4l2_format *f)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
cfe_dbg(cfe, "%s: [%s]\n", __func__, node_desc[node->id].name);
return cfe_validate_fmt_meta(node, f);
}
static int cfe_enum_framesizes(struct file *file, void *priv,
struct v4l2_frmsizeenum *fsize)
{
struct cfe_node *node = video_drvdata(file);
struct cfe_device *cfe = node->cfe;
const struct cfe_fmt *fmt;
cfe_dbg(cfe, "%s [%s]\n", __func__, node_desc[node->id].name);
if (fsize->index > 0)
return -EINVAL;
/* check for valid format */
fmt = find_format_by_pix(fsize->pixel_format);
if (!fmt) {
cfe_dbg(cfe, "Invalid pixel code: %x\n", fsize->pixel_format);
return -EINVAL;
}
/* TODO: Do we have limits on the step_width? */
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
fsize->stepwise.min_width = MIN_WIDTH;
fsize->stepwise.max_width = MAX_WIDTH;
fsize->stepwise.step_width = 2;
fsize->stepwise.min_height = MIN_HEIGHT;
fsize->stepwise.max_height = MAX_HEIGHT;
fsize->stepwise.step_height = 1;
return 0;
}
static int cfe_vb2_ioctl_reqbufs(struct file *file, void *priv,
struct v4l2_requestbuffers *p)
{
struct video_device *vdev = video_devdata(file);
struct cfe_node *node = video_get_drvdata(vdev);
struct cfe_device *cfe = node->cfe;
int ret;
cfe_dbg(cfe, "%s: [%s] type:%u\n", __func__, node_desc[node->id].name,
p->type);
if (p->type != V4L2_BUF_TYPE_VIDEO_CAPTURE &&
p->type != V4L2_BUF_TYPE_META_CAPTURE &&
p->type != V4L2_BUF_TYPE_META_OUTPUT)
return -EINVAL;
ret = vb2_queue_change_type(vdev->queue, p->type);
if (ret)
return ret;
return vb2_ioctl_reqbufs(file, priv, p);
}
static int cfe_vb2_ioctl_create_bufs(struct file *file, void *priv,
struct v4l2_create_buffers *p)
{
struct video_device *vdev = video_devdata(file);
struct cfe_node *node = video_get_drvdata(vdev);
struct cfe_device *cfe = node->cfe;
int ret;
cfe_dbg(cfe, "%s: [%s] type:%u\n", __func__, node_desc[node->id].name,
p->format.type);
if (p->format.type != V4L2_BUF_TYPE_VIDEO_CAPTURE &&
p->format.type != V4L2_BUF_TYPE_META_CAPTURE &&
p->format.type != V4L2_BUF_TYPE_META_OUTPUT)
return -EINVAL;
ret = vb2_queue_change_type(vdev->queue, p->format.type);
if (ret)
return ret;
return vb2_ioctl_create_bufs(file, priv, p);
}
static int cfe_subscribe_event(struct v4l2_fh *fh,
const struct v4l2_event_subscription *sub)
{
struct cfe_node *node = video_get_drvdata(fh->vdev);
switch (sub->type) {
case V4L2_EVENT_FRAME_SYNC:
if (!node_supports_image_output(node))
break;
return v4l2_event_subscribe(fh, sub, 2, NULL);
case V4L2_EVENT_SOURCE_CHANGE:
if (!node_supports_image_output(node) &&
!node_supports_meta_output(node))
break;
return v4l2_event_subscribe(fh, sub, 4, NULL);
}
return v4l2_ctrl_subscribe_event(fh, sub);
}
static const struct v4l2_ioctl_ops cfe_ioctl_ops = {
.vidioc_querycap = cfe_querycap,
.vidioc_enum_fmt_vid_cap = cfe_enum_fmt_vid_cap,
.vidioc_g_fmt_vid_cap = cfe_g_fmt,
.vidioc_s_fmt_vid_cap = cfe_s_fmt_vid_cap,
.vidioc_try_fmt_vid_cap = cfe_try_fmt_vid_cap,
.vidioc_enum_fmt_meta_cap = cfe_enum_fmt_meta,
.vidioc_g_fmt_meta_cap = cfe_g_fmt_meta,
.vidioc_s_fmt_meta_cap = cfe_s_fmt_meta,
.vidioc_try_fmt_meta_cap = cfe_try_fmt_meta,
.vidioc_enum_fmt_meta_out = cfe_enum_fmt_meta,
.vidioc_g_fmt_meta_out = cfe_g_fmt_meta,
.vidioc_s_fmt_meta_out = cfe_s_fmt_meta,
.vidioc_try_fmt_meta_out = cfe_try_fmt_meta,
.vidioc_enum_framesizes = cfe_enum_framesizes,
.vidioc_reqbufs = cfe_vb2_ioctl_reqbufs,
.vidioc_create_bufs = cfe_vb2_ioctl_create_bufs,
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
.vidioc_querybuf = vb2_ioctl_querybuf,
.vidioc_qbuf = vb2_ioctl_qbuf,
.vidioc_dqbuf = vb2_ioctl_dqbuf,
.vidioc_expbuf = vb2_ioctl_expbuf,
.vidioc_streamon = vb2_ioctl_streamon,
.vidioc_streamoff = vb2_ioctl_streamoff,
.vidioc_subscribe_event = cfe_subscribe_event,
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
};
static void cfe_notify(struct v4l2_subdev *sd, unsigned int notification,
void *arg)
{
struct cfe_device *cfe = to_cfe_device(sd->v4l2_dev);
switch (notification) {
case V4L2_DEVICE_NOTIFY_EVENT:
for (unsigned int i = 0; i < NUM_NODES; i++) {
struct cfe_node *node = &cfe->node[i];
if (check_state(cfe, NODE_REGISTERED, i))
continue;
v4l2_event_queue(&node->video_dev, arg);
}
break;
default:
break;
}
}
/* cfe capture driver file operations */
static const struct v4l2_file_operations cfe_fops = {
.owner = THIS_MODULE,
.open = v4l2_fh_open,
.release = vb2_fop_release,
.poll = vb2_fop_poll,
.unlocked_ioctl = video_ioctl2,
.mmap = vb2_fop_mmap,
};
static int cfe_video_link_validate(struct media_link *link)
{
struct video_device *vd = container_of(link->sink->entity,
struct video_device, entity);
struct cfe_node *node = container_of(vd, struct cfe_node, video_dev);
struct cfe_device *cfe = node->cfe;
struct v4l2_mbus_framefmt *source_fmt;
struct v4l2_subdev_state *state;
struct v4l2_subdev *source_sd;
int ret = 0;
cfe_dbg(cfe, "%s: [%s] link \"%s\":%u -> \"%s\":%u\n", __func__,
node_desc[node->id].name,
link->source->entity->name, link->source->index,
link->sink->entity->name, link->sink->index);
if (!media_entity_remote_source_pad_unique(link->sink->entity)) {
cfe_err(cfe, "video node %s pad not connected\n", vd->name);
return -ENOTCONN;
}
source_sd = media_entity_to_v4l2_subdev(link->source->entity);
state = v4l2_subdev_lock_and_get_active_state(source_sd);
source_fmt = v4l2_subdev_state_get_format(state, link->source->index);
if (!source_fmt) {
ret = -EINVAL;
goto out;
}
if (is_image_output_node(node)) {
struct v4l2_pix_format *pix_fmt = &node->vid_fmt.fmt.pix;
const struct cfe_fmt *fmt;
if (source_fmt->width != pix_fmt->width ||
source_fmt->height != pix_fmt->height) {
cfe_err(cfe, "Wrong width or height %ux%u (remote pad set to %ux%u)\n",
pix_fmt->width, pix_fmt->height,
source_fmt->width, source_fmt->height);
ret = -EINVAL;
goto out;
}
fmt = find_format_by_code_and_fourcc(source_fmt->code,
pix_fmt->pixelformat);
if (!fmt) {
cfe_err(cfe, "Format mismatch!\n");
ret = -EINVAL;
goto out;
}
} else if (is_csi2_node(node) && is_meta_output_node(node)) {
struct v4l2_meta_format *meta_fmt = &node->meta_fmt.fmt.meta;
const struct cfe_fmt *fmt;
if (source_fmt->width != meta_fmt->width ||
source_fmt->height != meta_fmt->height) {
cfe_err(cfe, "Wrong width or height %ux%u (remote pad set to %ux%u)\n",
meta_fmt->width, meta_fmt->height,
source_fmt->width, source_fmt->height);
ret = -EINVAL;
goto out;
}
fmt = find_format_by_code_and_fourcc(source_fmt->code,
meta_fmt->dataformat);
if (!fmt) {
cfe_err(cfe, "Format mismatch!\n");
ret = -EINVAL;
goto out;
}
}
out:
v4l2_subdev_unlock_state(state);
return ret;
}
static const struct media_entity_operations cfe_media_entity_ops = {
.link_validate = cfe_video_link_validate,
};
static int cfe_video_link_notify(struct media_link *link, u32 flags,
unsigned int notification)
{
struct media_device *mdev = link->graph_obj.mdev;
struct cfe_device *cfe = container_of(mdev, struct cfe_device, mdev);
struct media_entity *fe = &cfe->fe.sd.entity;
struct media_entity *csi2 = &cfe->csi2.sd.entity;
unsigned long lock_flags;
if (notification != MEDIA_DEV_NOTIFY_POST_LINK_CH)
return 0;
cfe_dbg(cfe, "%s: %s[%u] -> %s[%u] 0x%x", __func__,
link->source->entity->name, link->source->index,
link->sink->entity->name, link->sink->index, flags);
spin_lock_irqsave(&cfe->state_lock, lock_flags);
for (unsigned int i = 0; i < NUM_NODES; i++) {
if (link->sink->entity != &cfe->node[i].video_dev.entity &&
link->source->entity != &cfe->node[i].video_dev.entity)
continue;
if (link->flags & MEDIA_LNK_FL_ENABLED)
set_state(cfe, NODE_ENABLED, i);
else
clear_state(cfe, NODE_ENABLED, i);
break;
}
spin_unlock_irqrestore(&cfe->state_lock, lock_flags);
if (link->source->entity != csi2)
return 0;
if (link->sink->entity != fe)
return 0;
if (link->sink->index != 0)
return 0;
cfe->fe_csi2_channel = -1;
if (link->flags & MEDIA_LNK_FL_ENABLED) {
if (link->source->index == node_desc[CSI2_CH0].link_pad)
cfe->fe_csi2_channel = CSI2_CH0;
else if (link->source->index == node_desc[CSI2_CH1].link_pad)
cfe->fe_csi2_channel = CSI2_CH1;
else if (link->source->index == node_desc[CSI2_CH2].link_pad)
cfe->fe_csi2_channel = CSI2_CH2;
else if (link->source->index == node_desc[CSI2_CH3].link_pad)
cfe->fe_csi2_channel = CSI2_CH3;
}
if (is_fe_enabled(cfe))
cfe_dbg(cfe, "%s: Found CSI2:%d -> FE:0 link\n", __func__,
cfe->fe_csi2_channel);
else
cfe_dbg(cfe, "%s: Unable to find CSI2:x -> FE:0 link\n",
__func__);
return 0;
}
static const struct media_device_ops cfe_media_device_ops = {
.link_notify = cfe_video_link_notify,
};
static void cfe_release(struct kref *kref)
{
struct cfe_device *cfe = container_of(kref, struct cfe_device, kref);
media_device_cleanup(&cfe->mdev);
kfree(cfe);
}
static void cfe_put(struct cfe_device *cfe)
{
kref_put(&cfe->kref, cfe_release);
}
static void cfe_get(struct cfe_device *cfe)
{
kref_get(&cfe->kref);
}
static void cfe_node_release(struct video_device *vdev)
{
struct cfe_node *node = video_get_drvdata(vdev);
cfe_put(node->cfe);
}
static int cfe_register_node(struct cfe_device *cfe, int id)
{
struct video_device *vdev;
const struct cfe_fmt *fmt;
struct vb2_queue *q;
struct cfe_node *node = &cfe->node[id];
int ret;
node->cfe = cfe;
node->id = id;
if (node_supports_image(node)) {
if (node_supports_image_output(node))
node->vid_fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
else
node->vid_fmt.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
fmt = find_format_by_code(cfe_default_format.code);
if (!fmt) {
cfe_err(cfe, "Failed to find format code\n");
return -EINVAL;
}
node->vid_fmt.fmt.pix.pixelformat = fmt->fourcc;
v4l2_fill_pix_format(&node->vid_fmt.fmt.pix,
&cfe_default_format);
ret = cfe_validate_fmt_vid_cap(node, &node->vid_fmt);
if (ret)
return ret;
}
if (node_supports_meta(node)) {
if (node_supports_meta_output(node))
node->meta_fmt.type = V4L2_BUF_TYPE_META_CAPTURE;
else
node->meta_fmt.type = V4L2_BUF_TYPE_META_OUTPUT;
ret = cfe_validate_fmt_meta(node, &node->meta_fmt);
if (ret)
return ret;
}
mutex_init(&node->lock);
q = &node->buffer_queue;
q->type = node_supports_image(node) ? node->vid_fmt.type :
node->meta_fmt.type;
q->io_modes = VB2_MMAP | VB2_DMABUF;
q->drv_priv = node;
q->ops = &cfe_video_qops;
q->mem_ops = &vb2_dma_contig_memops;
q->buf_struct_size = id == FE_CONFIG ? sizeof(struct cfe_config_buffer)
: sizeof(struct cfe_buffer);
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
q->lock = &node->lock;
q->min_queued_buffers = 1;
q->dev = &cfe->pdev->dev;
ret = vb2_queue_init(q);
if (ret) {
cfe_err(cfe, "vb2_queue_init() failed\n");
return ret;
}
INIT_LIST_HEAD(&node->dma_queue);
vdev = &node->video_dev;
vdev->release = cfe_node_release;
vdev->fops = &cfe_fops;
vdev->ioctl_ops = &cfe_ioctl_ops;
vdev->entity.ops = &cfe_media_entity_ops;
vdev->v4l2_dev = &cfe->v4l2_dev;
vdev->vfl_dir = (node_supports_image_output(node) ||
node_supports_meta_output(node)) ?
VFL_DIR_RX :
VFL_DIR_TX;
vdev->queue = q;
vdev->lock = &node->lock;
vdev->device_caps = node_desc[id].caps;
vdev->device_caps |= V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
/* Define the device names */
snprintf(vdev->name, sizeof(vdev->name), "%s-%s", CFE_MODULE_NAME,
node_desc[id].name);
video_set_drvdata(vdev, node);
node->pad.flags = node_desc[id].pad_flags;
media_entity_pads_init(&vdev->entity, 1, &node->pad);
if (!node_supports_image(node)) {
v4l2_disable_ioctl(&node->video_dev,
VIDIOC_ENUM_FRAMEINTERVALS);
v4l2_disable_ioctl(&node->video_dev, VIDIOC_ENUM_FRAMESIZES);
}
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
if (ret) {
cfe_err(cfe, "Unable to register video device %s\n",
vdev->name);
return ret;
}
cfe_info(cfe, "Registered [%s] node id %d as /dev/video%u\n",
vdev->name, id, vdev->num);
/*
* Acquire a reference to cfe, which will be released when the video
* device will be unregistered and userspace will have closed all open
* file handles.
*/
cfe_get(cfe);
set_state(cfe, NODE_REGISTERED, id);
return 0;
}
static void cfe_unregister_nodes(struct cfe_device *cfe)
{
for (unsigned int i = 0; i < NUM_NODES; i++) {
struct cfe_node *node = &cfe->node[i];
if (check_state(cfe, NODE_REGISTERED, i)) {
clear_state(cfe, NODE_REGISTERED, i);
video_unregister_device(&node->video_dev);
}
}
}
static int cfe_link_node_pads(struct cfe_device *cfe)
{
struct media_pad *remote_pad;
int ret;
/* Source -> CSI2 */
ret = v4l2_create_fwnode_links_to_pad(cfe->source_sd,
&cfe->csi2.pad[CSI2_PAD_SINK],
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (ret) {
cfe_err(cfe, "Failed to create links to the source: %d\n", ret);
return ret;
}
remote_pad = media_pad_remote_pad_unique(&cfe->csi2.pad[CSI2_PAD_SINK]);
if (IS_ERR(remote_pad)) {
ret = PTR_ERR(remote_pad);
cfe_err(cfe, "Failed to get unique remote source pad: %d\n",
ret);
return ret;
}
cfe->source_pad = remote_pad->index;
for (unsigned int i = 0; i < CSI2_NUM_CHANNELS; i++) {
struct cfe_node *node = &cfe->node[i];
if (!check_state(cfe, NODE_REGISTERED, i))
continue;
/* CSI2 channel # -> /dev/video# */
ret = media_create_pad_link(&cfe->csi2.sd.entity,
node_desc[i].link_pad,
&node->video_dev.entity, 0, 0);
if (ret)
return ret;
if (node_supports_image(node)) {
/* CSI2 channel # -> FE Input */
ret = media_create_pad_link(&cfe->csi2.sd.entity,
node_desc[i].link_pad,
&cfe->fe.sd.entity,
FE_STREAM_PAD, 0);
if (ret)
return ret;
}
}
for (unsigned int i = CSI2_NUM_CHANNELS; i < NUM_NODES; i++) {
struct cfe_node *node = &cfe->node[i];
struct media_entity *src, *dst;
unsigned int src_pad, dst_pad;
if (node_desc[i].pad_flags & MEDIA_PAD_FL_SINK) {
/* FE -> /dev/video# */
src = &cfe->fe.sd.entity;
src_pad = node_desc[i].link_pad;
dst = &node->video_dev.entity;
dst_pad = 0;
} else {
/* /dev/video# -> FE */
dst = &cfe->fe.sd.entity;
dst_pad = node_desc[i].link_pad;
src = &node->video_dev.entity;
src_pad = 0;
}
ret = media_create_pad_link(src, src_pad, dst, dst_pad, 0);
if (ret)
return ret;
}
return 0;
}
static int cfe_probe_complete(struct cfe_device *cfe)
{
int ret;
cfe->v4l2_dev.notify = cfe_notify;
for (unsigned int i = 0; i < NUM_NODES; i++) {
ret = cfe_register_node(cfe, i);
if (ret) {
cfe_err(cfe, "Unable to register video node %u.\n", i);
goto unregister;
}
}
ret = cfe_link_node_pads(cfe);
if (ret) {
cfe_err(cfe, "Unable to link node pads.\n");
goto unregister;
}
ret = v4l2_device_register_subdev_nodes(&cfe->v4l2_dev);
if (ret) {
cfe_err(cfe, "Unable to register subdev nodes.\n");
goto unregister;
}
return 0;
unregister:
cfe_unregister_nodes(cfe);
return ret;
}
static int cfe_async_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *subdev,
struct v4l2_async_connection *asd)
{
struct cfe_device *cfe = to_cfe_device(notifier->v4l2_dev);
if (cfe->source_sd) {
cfe_err(cfe, "Rejecting subdev %s (Already set!!)",
subdev->name);
return 0;
}
cfe->source_sd = subdev;
cfe_dbg(cfe, "Using source %s for capture\n", subdev->name);
return 0;
}
static int cfe_async_complete(struct v4l2_async_notifier *notifier)
{
struct cfe_device *cfe = to_cfe_device(notifier->v4l2_dev);
return cfe_probe_complete(cfe);
}
static const struct v4l2_async_notifier_operations cfe_async_ops = {
.bound = cfe_async_bound,
.complete = cfe_async_complete,
};
static int cfe_register_async_nf(struct cfe_device *cfe)
{
struct platform_device *pdev = cfe->pdev;
struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY };
struct fwnode_handle *local_ep_fwnode;
struct v4l2_async_connection *asd;
int ret;
local_ep_fwnode = fwnode_graph_get_endpoint_by_id(pdev->dev.fwnode, 0,
0, 0);
if (!local_ep_fwnode) {
cfe_err(cfe, "Failed to find local endpoint fwnode\n");
return -ENODEV;
}
/* Parse the local endpoint and validate its configuration. */
ret = v4l2_fwnode_endpoint_parse(local_ep_fwnode, &ep);
if (ret) {
cfe_err(cfe, "Failed to find remote endpoint fwnode\n");
goto err_put_local_fwnode;
}
for (unsigned int lane = 0; lane < ep.bus.mipi_csi2.num_data_lanes;
lane++) {
if (ep.bus.mipi_csi2.data_lanes[lane] != lane + 1) {
cfe_err(cfe, "Data lanes reordering not supported\n");
ret = -EINVAL;
goto err_put_local_fwnode;
}
}
cfe->csi2.dphy.max_lanes = ep.bus.mipi_csi2.num_data_lanes;
cfe->csi2.bus_flags = ep.bus.mipi_csi2.flags;
/* Initialize and register the async notifier. */
v4l2_async_nf_init(&cfe->notifier, &cfe->v4l2_dev);
cfe->notifier.ops = &cfe_async_ops;
asd = v4l2_async_nf_add_fwnode_remote(&cfe->notifier, local_ep_fwnode,
struct v4l2_async_connection);
if (IS_ERR(asd)) {
ret = PTR_ERR(asd);
cfe_err(cfe, "Error adding subdevice: %d\n", ret);
goto err_put_local_fwnode;
}
ret = v4l2_async_nf_register(&cfe->notifier);
if (ret) {
cfe_err(cfe, "Error registering async notifier: %d\n", ret);
goto err_nf_cleanup;
}
fwnode_handle_put(local_ep_fwnode);
return 0;
err_nf_cleanup:
v4l2_async_nf_cleanup(&cfe->notifier);
err_put_local_fwnode:
fwnode_handle_put(local_ep_fwnode);
return ret;
}
static int cfe_probe(struct platform_device *pdev)
{
struct cfe_device *cfe;
char debugfs_name[32];
int ret;
cfe = kzalloc(sizeof(*cfe), GFP_KERNEL);
if (!cfe)
return -ENOMEM;
platform_set_drvdata(pdev, cfe);
kref_init(&cfe->kref);
cfe->pdev = pdev;
cfe->fe_csi2_channel = -1;
spin_lock_init(&cfe->state_lock);
cfe->csi2.base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(cfe->csi2.base)) {
dev_err(&pdev->dev, "Failed to get dma io block\n");
ret = PTR_ERR(cfe->csi2.base);
goto err_cfe_put;
}
cfe->csi2.dphy.base = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(cfe->csi2.dphy.base)) {
dev_err(&pdev->dev, "Failed to get host io block\n");
ret = PTR_ERR(cfe->csi2.dphy.base);
goto err_cfe_put;
}
cfe->mipi_cfg_base = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(cfe->mipi_cfg_base)) {
dev_err(&pdev->dev, "Failed to get mipi cfg io block\n");
ret = PTR_ERR(cfe->mipi_cfg_base);
goto err_cfe_put;
}
cfe->fe.base = devm_platform_ioremap_resource(pdev, 3);
if (IS_ERR(cfe->fe.base)) {
dev_err(&pdev->dev, "Failed to get pisp fe io block\n");
ret = PTR_ERR(cfe->fe.base);
goto err_cfe_put;
}
ret = platform_get_irq(pdev, 0);
if (ret <= 0) {
ret = -EINVAL;
goto err_cfe_put;
}
ret = devm_request_irq(&pdev->dev, ret, cfe_isr, 0, "rp1-cfe", cfe);
if (ret) {
dev_err(&pdev->dev, "Unable to request interrupt\n");
ret = -EINVAL;
goto err_cfe_put;
}
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (ret) {
dev_err(&pdev->dev, "DMA enable failed\n");
goto err_cfe_put;
}
ret = vb2_dma_contig_set_max_seg_size(&pdev->dev, UINT_MAX);
if (ret)
goto err_cfe_put;
/* TODO: Enable clock only when running. */
cfe->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(cfe->clk)) {
ret = dev_err_probe(&pdev->dev, PTR_ERR(cfe->clk),
"clock not found\n");
goto err_cfe_put;
}
cfe->mdev.dev = &pdev->dev;
cfe->mdev.ops = &cfe_media_device_ops;
strscpy(cfe->mdev.model, CFE_MODULE_NAME, sizeof(cfe->mdev.model));
strscpy(cfe->mdev.serial, "", sizeof(cfe->mdev.serial));
snprintf(cfe->mdev.bus_info, sizeof(cfe->mdev.bus_info), "platform:%s",
dev_name(&pdev->dev));
media_device_init(&cfe->mdev);
cfe->v4l2_dev.mdev = &cfe->mdev;
ret = v4l2_device_register(&pdev->dev, &cfe->v4l2_dev);
if (ret) {
cfe_err(cfe, "Unable to register v4l2 device.\n");
goto err_cfe_put;
}
snprintf(debugfs_name, sizeof(debugfs_name), "rp1-cfe:%s",
dev_name(&pdev->dev));
cfe->debugfs = debugfs_create_dir(debugfs_name, NULL);
debugfs_create_file("regs", 0440, cfe->debugfs, cfe,
&mipi_cfg_regs_fops);
/* Enable the block power domain */
pm_runtime_enable(&pdev->dev);
ret = pm_runtime_resume_and_get(&cfe->pdev->dev);
if (ret)
goto err_runtime_disable;
cfe->csi2.v4l2_dev = &cfe->v4l2_dev;
ret = csi2_init(&cfe->csi2, cfe->debugfs);
if (ret) {
cfe_err(cfe, "Failed to init csi2 (%d)\n", ret);
goto err_runtime_put;
}
cfe->fe.v4l2_dev = &cfe->v4l2_dev;
ret = pisp_fe_init(&cfe->fe, cfe->debugfs);
if (ret) {
cfe_err(cfe, "Failed to init pisp fe (%d)\n", ret);
goto err_csi2_uninit;
}
cfe->mdev.hw_revision = cfe->fe.hw_revision;
ret = media_device_register(&cfe->mdev);
if (ret < 0) {
cfe_err(cfe, "Unable to register media-controller device.\n");
goto err_pisp_fe_uninit;
}
ret = cfe_register_async_nf(cfe);
if (ret) {
cfe_err(cfe, "Failed to connect subdevs\n");
goto err_media_unregister;
}
pm_runtime_put(&cfe->pdev->dev);
return 0;
err_media_unregister:
media_device_unregister(&cfe->mdev);
err_pisp_fe_uninit:
pisp_fe_uninit(&cfe->fe);
err_csi2_uninit:
csi2_uninit(&cfe->csi2);
err_runtime_put:
pm_runtime_put(&cfe->pdev->dev);
err_runtime_disable:
pm_runtime_disable(&pdev->dev);
debugfs_remove(cfe->debugfs);
v4l2_device_unregister(&cfe->v4l2_dev);
err_cfe_put:
cfe_put(cfe);
return ret;
}
static void cfe_remove(struct platform_device *pdev)
{
struct cfe_device *cfe = platform_get_drvdata(pdev);
debugfs_remove(cfe->debugfs);
v4l2_async_nf_unregister(&cfe->notifier);
v4l2_async_nf_cleanup(&cfe->notifier);
media_device_unregister(&cfe->mdev);
cfe_unregister_nodes(cfe);
pisp_fe_uninit(&cfe->fe);
csi2_uninit(&cfe->csi2);
pm_runtime_disable(&pdev->dev);
v4l2_device_unregister(&cfe->v4l2_dev);
cfe_put(cfe);
}
static int cfe_runtime_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct cfe_device *cfe = platform_get_drvdata(pdev);
clk_disable_unprepare(cfe->clk);
return 0;
}
static int cfe_runtime_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct cfe_device *cfe = platform_get_drvdata(pdev);
int ret;
ret = clk_prepare_enable(cfe->clk);
if (ret) {
dev_err(dev, "Unable to enable clock\n");
return ret;
}
return 0;
}
static const struct dev_pm_ops cfe_pm_ops = {
SET_RUNTIME_PM_OPS(cfe_runtime_suspend, cfe_runtime_resume, NULL)
SET_LATE_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
};
static const struct of_device_id cfe_of_match[] = {
{ .compatible = "raspberrypi,rp1-cfe" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cfe_of_match);
static struct platform_driver cfe_driver = {
.probe = cfe_probe,
.remove = cfe_remove,
.driver = {
.name = CFE_MODULE_NAME,
.of_match_table = cfe_of_match,
.pm = &cfe_pm_ops,
},
};
module_platform_driver(cfe_driver);
MODULE_AUTHOR("Naushir Patuck <naush@raspberrypi.com>");
MODULE_AUTHOR("Tomi Valkeinen <tomi.valkeinen@ideasonboard.com>");
MODULE_DESCRIPTION("Raspberry Pi RP1 Camera Front End driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(CFE_VERSION);