2738 lines
72 KiB
C
2738 lines
72 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* BCM283x / BCM271x Unicam Capture Driver
|
|
*
|
|
* Copyright (C) 2017-2020 - Raspberry Pi (Trading) Ltd.
|
|
* Copyright (C) 2024 - Ideas on Board
|
|
*
|
|
* Dave Stevenson <dave.stevenson@raspberrypi.com>
|
|
*
|
|
* Based on TI am437x driver by
|
|
* Benoit Parrot <bparrot@ti.com>
|
|
* Lad, Prabhakar <prabhakar.csengg@gmail.com>
|
|
*
|
|
* and TI CAL camera interface driver by
|
|
* Benoit Parrot <bparrot@ti.com>
|
|
*
|
|
*
|
|
* There are two camera drivers in the kernel for BCM283x - this one and
|
|
* bcm2835-camera (currently in staging).
|
|
*
|
|
* This driver directly controls the Unicam peripheral - there is no
|
|
* involvement with the VideoCore firmware. Unicam receives CSI-2 or CCP2 data
|
|
* and writes it into SDRAM. The only potential processing options are to
|
|
* repack Bayer data into an alternate format, and applying windowing. The
|
|
* repacking does not shift the data, so can repack V4L2_PIX_FMT_Sxxxx10P to
|
|
* V4L2_PIX_FMT_Sxxxx10, or V4L2_PIX_FMT_Sxxxx12P to V4L2_PIX_FMT_Sxxxx12, but
|
|
* not generically up to V4L2_PIX_FMT_Sxxxx16. Support for windowing may be
|
|
* added later.
|
|
*
|
|
* It should be possible to connect this driver to any sensor with a suitable
|
|
* output interface and V4L2 subdevice driver.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/videodev2.h>
|
|
|
|
#include <media/mipi-csi2.h>
|
|
#include <media/v4l2-async.h>
|
|
#include <media/v4l2-common.h>
|
|
#include <media/v4l2-dev.h>
|
|
#include <media/v4l2-device.h>
|
|
#include <media/v4l2-event.h>
|
|
#include <media/v4l2-ioctl.h>
|
|
#include <media/v4l2-fwnode.h>
|
|
#include <media/v4l2-mc.h>
|
|
#include <media/v4l2-subdev.h>
|
|
#include <media/videobuf2-dma-contig.h>
|
|
|
|
#include "bcm2835-unicam-regs.h"
|
|
|
|
#define UNICAM_MODULE_NAME "unicam"
|
|
|
|
/*
|
|
* Unicam must request a minimum of 250Mhz from the VPU clock.
|
|
* Otherwise the input FIFOs overrun and cause image corruption.
|
|
*/
|
|
#define UNICAM_MIN_VPU_CLOCK_RATE (250 * 1000 * 1000)
|
|
|
|
/* Unicam has an internal DMA alignment constraint of 16 bytes for each line. */
|
|
#define UNICAM_DMA_BPL_ALIGNMENT 16
|
|
|
|
/*
|
|
* The image stride is stored in a 16 bit register, and needs to be aligned to
|
|
* the DMA constraint. As the ISP in the same SoC has a 32 bytes alignment
|
|
* constraint on its input, set the image stride alignment to 32 bytes here as
|
|
* well to avoid incompatible configurations.
|
|
*/
|
|
#define UNICAM_IMAGE_BPL_ALIGNMENT 32
|
|
#define UNICAM_IMAGE_MAX_BPL ((1U << 16) - UNICAM_IMAGE_BPL_ALIGNMENT)
|
|
|
|
/*
|
|
* Max width is therefore determined by the max stride divided by the number of
|
|
* bits per pixel. Take 32bpp as a worst case. No imposed limit on the height,
|
|
* so adopt a square image for want of anything better.
|
|
*/
|
|
#define UNICAM_IMAGE_MIN_WIDTH 16
|
|
#define UNICAM_IMAGE_MIN_HEIGHT 16
|
|
#define UNICAM_IMAGE_MAX_WIDTH (UNICAM_IMAGE_MAX_BPL / 4)
|
|
#define UNICAM_IMAGE_MAX_HEIGHT UNICAM_IMAGE_MAX_WIDTH
|
|
|
|
/*
|
|
* There's no intrinsic limits on the width and height for embedded data. Use
|
|
* the same maximum values as for the image, to avoid overflows in the image
|
|
* size computation.
|
|
*/
|
|
#define UNICAM_META_MIN_WIDTH 1
|
|
#define UNICAM_META_MIN_HEIGHT 1
|
|
#define UNICAM_META_MAX_WIDTH UNICAM_IMAGE_MAX_WIDTH
|
|
#define UNICAM_META_MAX_HEIGHT UNICAM_IMAGE_MAX_HEIGHT
|
|
|
|
/*
|
|
* Size of the dummy buffer. Can be any size really, but the DMA
|
|
* allocation works in units of page sizes.
|
|
*/
|
|
#define UNICAM_DUMMY_BUF_SIZE PAGE_SIZE
|
|
|
|
enum unicam_pad {
|
|
UNICAM_SD_PAD_SINK,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE,
|
|
UNICAM_SD_PAD_SOURCE_METADATA,
|
|
UNICAM_SD_NUM_PADS
|
|
};
|
|
|
|
enum unicam_node_type {
|
|
UNICAM_IMAGE_NODE,
|
|
UNICAM_METADATA_NODE,
|
|
UNICAM_MAX_NODES
|
|
};
|
|
|
|
/*
|
|
* struct unicam_format_info - Unicam media bus format information
|
|
* @fourcc: V4L2 pixel format FCC identifier. 0 if n/a.
|
|
* @unpacked_fourcc: V4L2 pixel format FCC identifier if the data is expanded
|
|
* out to 16bpp. 0 if n/a.
|
|
* @code: V4L2 media bus format code.
|
|
* @depth: Bits per pixel as delivered from the source.
|
|
* @csi_dt: CSI data type.
|
|
* @unpack: PUM value when unpacking to @unpacked_fourcc
|
|
*/
|
|
struct unicam_format_info {
|
|
u32 fourcc;
|
|
u32 unpacked_fourcc;
|
|
u32 code;
|
|
u8 depth;
|
|
u8 csi_dt;
|
|
u8 unpack;
|
|
};
|
|
|
|
struct unicam_buffer {
|
|
struct vb2_v4l2_buffer vb;
|
|
struct list_head list;
|
|
dma_addr_t dma_addr;
|
|
unsigned int size;
|
|
};
|
|
|
|
static inline struct unicam_buffer *to_unicam_buffer(struct vb2_buffer *vb)
|
|
{
|
|
return container_of(vb, struct unicam_buffer, vb.vb2_buf);
|
|
}
|
|
|
|
struct unicam_node {
|
|
bool registered;
|
|
unsigned int id;
|
|
|
|
/* Pointer to the current v4l2_buffer */
|
|
struct unicam_buffer *cur_frm;
|
|
/* Pointer to the next v4l2_buffer */
|
|
struct unicam_buffer *next_frm;
|
|
/* Used to store current pixel format */
|
|
struct v4l2_format fmt;
|
|
/* Buffer queue used in video-buf */
|
|
struct vb2_queue buffer_queue;
|
|
/* Queue of filled frames */
|
|
struct list_head dma_queue;
|
|
/* IRQ lock for DMA queue */
|
|
spinlock_t dma_queue_lock;
|
|
/* Identifies video device for this channel */
|
|
struct video_device video_dev;
|
|
/* Pointer to the parent handle */
|
|
struct unicam_device *dev;
|
|
struct media_pad pad;
|
|
/*
|
|
* Dummy buffer intended to be used by unicam
|
|
* if we have no other queued buffers to swap to.
|
|
*/
|
|
struct unicam_buffer dummy_buf;
|
|
void *dummy_buf_cpu_addr;
|
|
};
|
|
|
|
struct unicam_device {
|
|
struct kref kref;
|
|
|
|
/* peripheral base address */
|
|
void __iomem *base;
|
|
/* clock gating base address */
|
|
void __iomem *clk_gate_base;
|
|
/* lp clock handle */
|
|
struct clk *clock;
|
|
/* vpu clock handle */
|
|
struct clk *vpu_clock;
|
|
/* V4l2 device */
|
|
struct v4l2_device v4l2_dev;
|
|
struct media_device mdev;
|
|
|
|
/* parent device */
|
|
struct device *dev;
|
|
/* subdevice async notifier */
|
|
struct v4l2_async_notifier notifier;
|
|
unsigned int sequence;
|
|
|
|
/* Sensor node */
|
|
struct {
|
|
struct v4l2_subdev *subdev;
|
|
struct media_pad *pad;
|
|
} sensor;
|
|
|
|
/* Internal subdev */
|
|
struct {
|
|
struct v4l2_subdev sd;
|
|
struct media_pad pads[UNICAM_SD_NUM_PADS];
|
|
unsigned int enabled_streams;
|
|
} subdev;
|
|
|
|
enum v4l2_mbus_type bus_type;
|
|
/*
|
|
* Stores bus.mipi_csi2.flags for CSI2 sensors, or
|
|
* bus.mipi_csi1.strobe for CCP2.
|
|
*/
|
|
unsigned int bus_flags;
|
|
unsigned int max_data_lanes;
|
|
|
|
struct {
|
|
struct media_pipeline pipe;
|
|
unsigned int num_data_lanes;
|
|
unsigned int nodes;
|
|
} pipe;
|
|
|
|
/* Lock used for the video devices of both nodes */
|
|
struct mutex lock;
|
|
struct unicam_node node[UNICAM_MAX_NODES];
|
|
};
|
|
|
|
static inline struct unicam_device *
|
|
notifier_to_unicam_device(struct v4l2_async_notifier *notifier)
|
|
{
|
|
return container_of(notifier, struct unicam_device, notifier);
|
|
}
|
|
|
|
static inline struct unicam_device *
|
|
sd_to_unicam_device(struct v4l2_subdev *sd)
|
|
{
|
|
return container_of(sd, struct unicam_device, subdev.sd);
|
|
}
|
|
|
|
static void unicam_release(struct kref *kref)
|
|
{
|
|
struct unicam_device *unicam =
|
|
container_of(kref, struct unicam_device, kref);
|
|
|
|
if (unicam->mdev.dev)
|
|
media_device_cleanup(&unicam->mdev);
|
|
|
|
mutex_destroy(&unicam->lock);
|
|
kfree(unicam);
|
|
}
|
|
|
|
static struct unicam_device *unicam_get(struct unicam_device *unicam)
|
|
{
|
|
kref_get(&unicam->kref);
|
|
|
|
return unicam;
|
|
}
|
|
|
|
static void unicam_put(struct unicam_device *unicam)
|
|
{
|
|
kref_put(&unicam->kref, unicam_release);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Misc helper functions
|
|
*/
|
|
|
|
static inline bool unicam_sd_pad_is_source(u32 pad)
|
|
{
|
|
/* Camera RX has 1 sink pad, and N source pads */
|
|
return pad != UNICAM_SD_PAD_SINK;
|
|
}
|
|
|
|
static inline bool is_metadata_node(struct unicam_node *node)
|
|
{
|
|
return node->video_dev.device_caps & V4L2_CAP_META_CAPTURE;
|
|
}
|
|
|
|
static inline bool is_image_node(struct unicam_node *node)
|
|
{
|
|
return node->video_dev.device_caps & V4L2_CAP_VIDEO_CAPTURE;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Format data table and helper functions
|
|
*/
|
|
|
|
static const struct v4l2_mbus_framefmt unicam_default_image_format = {
|
|
.width = 640,
|
|
.height = 480,
|
|
.code = MEDIA_BUS_FMT_UYVY8_1X16,
|
|
.field = V4L2_FIELD_NONE,
|
|
.colorspace = V4L2_COLORSPACE_SRGB,
|
|
.ycbcr_enc = V4L2_YCBCR_ENC_601,
|
|
.quantization = V4L2_QUANTIZATION_LIM_RANGE,
|
|
.xfer_func = V4L2_XFER_FUNC_SRGB,
|
|
.flags = 0,
|
|
};
|
|
|
|
static const struct v4l2_mbus_framefmt unicam_default_meta_format = {
|
|
.width = 640,
|
|
.height = 2,
|
|
.code = MEDIA_BUS_FMT_META_8,
|
|
.field = V4L2_FIELD_NONE,
|
|
};
|
|
|
|
static const struct unicam_format_info unicam_image_formats[] = {
|
|
/* YUV Formats */
|
|
{
|
|
.fourcc = V4L2_PIX_FMT_YUYV,
|
|
.code = MEDIA_BUS_FMT_YUYV8_1X16,
|
|
.depth = 16,
|
|
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_UYVY,
|
|
.code = MEDIA_BUS_FMT_UYVY8_1X16,
|
|
.depth = 16,
|
|
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_YVYU,
|
|
.code = MEDIA_BUS_FMT_YVYU8_1X16,
|
|
.depth = 16,
|
|
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_VYUY,
|
|
.code = MEDIA_BUS_FMT_VYUY8_1X16,
|
|
.depth = 16,
|
|
.csi_dt = MIPI_CSI2_DT_YUV422_8B,
|
|
}, {
|
|
/* RGB Formats */
|
|
.fourcc = V4L2_PIX_FMT_RGB565, /* gggbbbbb rrrrrggg */
|
|
.code = MEDIA_BUS_FMT_RGB565_1X16,
|
|
.depth = 16,
|
|
.csi_dt = MIPI_CSI2_DT_RGB565,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_RGB24, /* rgb */
|
|
.code = MEDIA_BUS_FMT_RGB888_1X24,
|
|
.depth = 24,
|
|
.csi_dt = MIPI_CSI2_DT_RGB888,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_BGR24, /* bgr */
|
|
.code = MEDIA_BUS_FMT_BGR888_1X24,
|
|
.depth = 24,
|
|
.csi_dt = MIPI_CSI2_DT_RGB888,
|
|
}, {
|
|
/* Bayer Formats */
|
|
.fourcc = V4L2_PIX_FMT_SBGGR8,
|
|
.code = MEDIA_BUS_FMT_SBGGR8_1X8,
|
|
.depth = 8,
|
|
.csi_dt = MIPI_CSI2_DT_RAW8,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGBRG8,
|
|
.code = MEDIA_BUS_FMT_SGBRG8_1X8,
|
|
.depth = 8,
|
|
.csi_dt = MIPI_CSI2_DT_RAW8,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGRBG8,
|
|
.code = MEDIA_BUS_FMT_SGRBG8_1X8,
|
|
.depth = 8,
|
|
.csi_dt = MIPI_CSI2_DT_RAW8,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SRGGB8,
|
|
.code = MEDIA_BUS_FMT_SRGGB8_1X8,
|
|
.depth = 8,
|
|
.csi_dt = MIPI_CSI2_DT_RAW8,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SBGGR10P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SBGGR10,
|
|
.code = MEDIA_BUS_FMT_SBGGR10_1X10,
|
|
.depth = 10,
|
|
.csi_dt = MIPI_CSI2_DT_RAW10,
|
|
.unpack = UNICAM_PUM_UNPACK10,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGBRG10P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SGBRG10,
|
|
.code = MEDIA_BUS_FMT_SGBRG10_1X10,
|
|
.depth = 10,
|
|
.csi_dt = MIPI_CSI2_DT_RAW10,
|
|
.unpack = UNICAM_PUM_UNPACK10,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGRBG10P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SGRBG10,
|
|
.code = MEDIA_BUS_FMT_SGRBG10_1X10,
|
|
.depth = 10,
|
|
.csi_dt = MIPI_CSI2_DT_RAW10,
|
|
.unpack = UNICAM_PUM_UNPACK10,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SRGGB10P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SRGGB10,
|
|
.code = MEDIA_BUS_FMT_SRGGB10_1X10,
|
|
.depth = 10,
|
|
.csi_dt = MIPI_CSI2_DT_RAW10,
|
|
.unpack = UNICAM_PUM_UNPACK10,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SBGGR12P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SBGGR12,
|
|
.code = MEDIA_BUS_FMT_SBGGR12_1X12,
|
|
.depth = 12,
|
|
.csi_dt = MIPI_CSI2_DT_RAW12,
|
|
.unpack = UNICAM_PUM_UNPACK12,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGBRG12P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SGBRG12,
|
|
.code = MEDIA_BUS_FMT_SGBRG12_1X12,
|
|
.depth = 12,
|
|
.csi_dt = MIPI_CSI2_DT_RAW12,
|
|
.unpack = UNICAM_PUM_UNPACK12,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGRBG12P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SGRBG12,
|
|
.code = MEDIA_BUS_FMT_SGRBG12_1X12,
|
|
.depth = 12,
|
|
.csi_dt = MIPI_CSI2_DT_RAW12,
|
|
.unpack = UNICAM_PUM_UNPACK12,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SRGGB12P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SRGGB12,
|
|
.code = MEDIA_BUS_FMT_SRGGB12_1X12,
|
|
.depth = 12,
|
|
.csi_dt = MIPI_CSI2_DT_RAW12,
|
|
.unpack = UNICAM_PUM_UNPACK12,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SBGGR14P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SBGGR14,
|
|
.code = MEDIA_BUS_FMT_SBGGR14_1X14,
|
|
.depth = 14,
|
|
.csi_dt = MIPI_CSI2_DT_RAW14,
|
|
.unpack = UNICAM_PUM_UNPACK14,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGBRG14P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SGBRG14,
|
|
.code = MEDIA_BUS_FMT_SGBRG14_1X14,
|
|
.depth = 14,
|
|
.csi_dt = MIPI_CSI2_DT_RAW14,
|
|
.unpack = UNICAM_PUM_UNPACK14,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SGRBG14P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SGRBG14,
|
|
.code = MEDIA_BUS_FMT_SGRBG14_1X14,
|
|
.depth = 14,
|
|
.csi_dt = MIPI_CSI2_DT_RAW14,
|
|
.unpack = UNICAM_PUM_UNPACK14,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_SRGGB14P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_SRGGB14,
|
|
.code = MEDIA_BUS_FMT_SRGGB14_1X14,
|
|
.depth = 14,
|
|
.csi_dt = MIPI_CSI2_DT_RAW14,
|
|
.unpack = UNICAM_PUM_UNPACK14,
|
|
}, {
|
|
/* 16 bit Bayer formats could be supported. */
|
|
|
|
/* Greyscale formats */
|
|
.fourcc = V4L2_PIX_FMT_GREY,
|
|
.code = MEDIA_BUS_FMT_Y8_1X8,
|
|
.depth = 8,
|
|
.csi_dt = MIPI_CSI2_DT_RAW8,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_Y10P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_Y10,
|
|
.code = MEDIA_BUS_FMT_Y10_1X10,
|
|
.depth = 10,
|
|
.csi_dt = MIPI_CSI2_DT_RAW10,
|
|
.unpack = UNICAM_PUM_UNPACK10,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_Y12P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_Y12,
|
|
.code = MEDIA_BUS_FMT_Y12_1X12,
|
|
.depth = 12,
|
|
.csi_dt = MIPI_CSI2_DT_RAW12,
|
|
.unpack = UNICAM_PUM_UNPACK12,
|
|
}, {
|
|
.fourcc = V4L2_PIX_FMT_Y14P,
|
|
.unpacked_fourcc = V4L2_PIX_FMT_Y14,
|
|
.code = MEDIA_BUS_FMT_Y14_1X14,
|
|
.depth = 14,
|
|
.csi_dt = MIPI_CSI2_DT_RAW14,
|
|
.unpack = UNICAM_PUM_UNPACK14,
|
|
},
|
|
};
|
|
|
|
static const struct unicam_format_info unicam_meta_formats[] = {
|
|
{
|
|
.fourcc = V4L2_META_FMT_GENERIC_8,
|
|
.code = MEDIA_BUS_FMT_META_8,
|
|
.depth = 8,
|
|
}, {
|
|
.fourcc = V4L2_META_FMT_GENERIC_CSI2_10,
|
|
.code = MEDIA_BUS_FMT_META_10,
|
|
.depth = 10,
|
|
}, {
|
|
.fourcc = V4L2_META_FMT_GENERIC_CSI2_12,
|
|
.code = MEDIA_BUS_FMT_META_12,
|
|
.depth = 12,
|
|
}, {
|
|
.fourcc = V4L2_META_FMT_GENERIC_CSI2_14,
|
|
.code = MEDIA_BUS_FMT_META_14,
|
|
.depth = 14,
|
|
},
|
|
};
|
|
|
|
/* Format setup functions */
|
|
static const struct unicam_format_info *
|
|
unicam_find_format_by_code(u32 code, u32 pad)
|
|
{
|
|
const struct unicam_format_info *formats;
|
|
unsigned int num_formats;
|
|
unsigned int i;
|
|
|
|
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
|
|
formats = unicam_image_formats;
|
|
num_formats = ARRAY_SIZE(unicam_image_formats);
|
|
} else {
|
|
formats = unicam_meta_formats;
|
|
num_formats = ARRAY_SIZE(unicam_meta_formats);
|
|
}
|
|
|
|
for (i = 0; i < num_formats; i++) {
|
|
if (formats[i].code == code)
|
|
return &formats[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct unicam_format_info *
|
|
unicam_find_format_by_fourcc(u32 fourcc, u32 pad)
|
|
{
|
|
const struct unicam_format_info *formats;
|
|
unsigned int num_formats;
|
|
unsigned int i;
|
|
|
|
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
|
|
formats = unicam_image_formats;
|
|
num_formats = ARRAY_SIZE(unicam_image_formats);
|
|
} else {
|
|
formats = unicam_meta_formats;
|
|
num_formats = ARRAY_SIZE(unicam_meta_formats);
|
|
}
|
|
|
|
for (i = 0; i < num_formats; ++i) {
|
|
if (formats[i].fourcc == fourcc)
|
|
return &formats[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void unicam_calc_image_size_bpl(struct unicam_device *unicam,
|
|
const struct unicam_format_info *fmtinfo,
|
|
struct v4l2_pix_format *pix)
|
|
{
|
|
u32 min_bpl;
|
|
|
|
v4l_bound_align_image(&pix->width, UNICAM_IMAGE_MIN_WIDTH,
|
|
UNICAM_IMAGE_MAX_WIDTH, 2,
|
|
&pix->height, UNICAM_IMAGE_MIN_HEIGHT,
|
|
UNICAM_IMAGE_MAX_HEIGHT, 0, 0);
|
|
|
|
/* Unpacking always goes to 16bpp */
|
|
if (pix->pixelformat == fmtinfo->unpacked_fourcc)
|
|
min_bpl = pix->width * 2;
|
|
else
|
|
min_bpl = pix->width * fmtinfo->depth / 8;
|
|
min_bpl = ALIGN(min_bpl, UNICAM_IMAGE_BPL_ALIGNMENT);
|
|
|
|
pix->bytesperline = ALIGN(pix->bytesperline, UNICAM_IMAGE_BPL_ALIGNMENT);
|
|
pix->bytesperline = clamp_t(unsigned int, pix->bytesperline, min_bpl,
|
|
UNICAM_IMAGE_MAX_BPL);
|
|
|
|
pix->sizeimage = pix->height * pix->bytesperline;
|
|
}
|
|
|
|
static void unicam_calc_meta_size_bpl(struct unicam_device *unicam,
|
|
const struct unicam_format_info *fmtinfo,
|
|
struct v4l2_meta_format *meta)
|
|
{
|
|
v4l_bound_align_image(&meta->width, UNICAM_META_MIN_WIDTH,
|
|
UNICAM_META_MAX_WIDTH, 0,
|
|
&meta->height, UNICAM_META_MIN_HEIGHT,
|
|
UNICAM_META_MAX_HEIGHT, 0, 0);
|
|
|
|
meta->bytesperline = ALIGN(meta->width * fmtinfo->depth / 8,
|
|
UNICAM_DMA_BPL_ALIGNMENT);
|
|
meta->buffersize = meta->height * meta->bytesperline;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Hardware handling
|
|
*/
|
|
|
|
static inline void unicam_clk_write(struct unicam_device *unicam, u32 val)
|
|
{
|
|
/* Pass the CM_PASSWORD along with the value. */
|
|
writel(val | 0x5a000000, unicam->clk_gate_base);
|
|
}
|
|
|
|
static inline u32 unicam_reg_read(struct unicam_device *unicam, u32 offset)
|
|
{
|
|
return readl(unicam->base + offset);
|
|
}
|
|
|
|
static inline void unicam_reg_write(struct unicam_device *unicam, u32 offset, u32 val)
|
|
{
|
|
writel(val, unicam->base + offset);
|
|
}
|
|
|
|
static inline int unicam_get_field(u32 value, u32 mask)
|
|
{
|
|
return (value & mask) >> __ffs(mask);
|
|
}
|
|
|
|
static inline void unicam_set_field(u32 *valp, u32 field, u32 mask)
|
|
{
|
|
u32 val = *valp;
|
|
|
|
val &= ~mask;
|
|
val |= (field << __ffs(mask)) & mask;
|
|
*valp = val;
|
|
}
|
|
|
|
static inline void unicam_reg_write_field(struct unicam_device *unicam, u32 offset,
|
|
u32 field, u32 mask)
|
|
{
|
|
u32 val = unicam_reg_read(unicam, offset);
|
|
|
|
unicam_set_field(&val, field, mask);
|
|
unicam_reg_write(unicam, offset, val);
|
|
}
|
|
|
|
static void unicam_wr_dma_addr(struct unicam_node *node,
|
|
struct unicam_buffer *buf)
|
|
{
|
|
dma_addr_t endaddr = buf->dma_addr + buf->size;
|
|
|
|
if (node->id == UNICAM_IMAGE_NODE) {
|
|
unicam_reg_write(node->dev, UNICAM_IBSA0, buf->dma_addr);
|
|
unicam_reg_write(node->dev, UNICAM_IBEA0, endaddr);
|
|
} else {
|
|
unicam_reg_write(node->dev, UNICAM_DBSA0, buf->dma_addr);
|
|
unicam_reg_write(node->dev, UNICAM_DBEA0, endaddr);
|
|
}
|
|
}
|
|
|
|
static unsigned int unicam_get_lines_done(struct unicam_device *unicam)
|
|
{
|
|
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
|
|
unsigned int stride = node->fmt.fmt.pix.bytesperline;
|
|
struct unicam_buffer *frm = node->cur_frm;
|
|
dma_addr_t cur_addr;
|
|
|
|
if (!frm)
|
|
return 0;
|
|
|
|
cur_addr = unicam_reg_read(unicam, UNICAM_IBWP);
|
|
return (unsigned int)(cur_addr - frm->dma_addr) / stride;
|
|
}
|
|
|
|
static void unicam_schedule_next_buffer(struct unicam_node *node)
|
|
{
|
|
struct unicam_buffer *buf;
|
|
|
|
buf = list_first_entry(&node->dma_queue, struct unicam_buffer, list);
|
|
node->next_frm = buf;
|
|
list_del(&buf->list);
|
|
|
|
unicam_wr_dma_addr(node, buf);
|
|
}
|
|
|
|
static void unicam_schedule_dummy_buffer(struct unicam_node *node)
|
|
{
|
|
int node_id = is_image_node(node) ? UNICAM_IMAGE_NODE : UNICAM_METADATA_NODE;
|
|
|
|
dev_dbg(node->dev->dev, "Scheduling dummy buffer for node %d\n", node_id);
|
|
|
|
unicam_wr_dma_addr(node, &node->dummy_buf);
|
|
|
|
node->next_frm = NULL;
|
|
}
|
|
|
|
static void unicam_process_buffer_complete(struct unicam_node *node,
|
|
unsigned int sequence)
|
|
{
|
|
node->cur_frm->vb.field = node->fmt.fmt.pix.field;
|
|
node->cur_frm->vb.sequence = sequence;
|
|
|
|
vb2_buffer_done(&node->cur_frm->vb.vb2_buf, VB2_BUF_STATE_DONE);
|
|
}
|
|
|
|
static void unicam_queue_event_sof(struct unicam_device *unicam)
|
|
{
|
|
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
|
|
struct v4l2_event event = {
|
|
.type = V4L2_EVENT_FRAME_SYNC,
|
|
.u.frame_sync.frame_sequence = unicam->sequence,
|
|
};
|
|
|
|
v4l2_event_queue(&node->video_dev, &event);
|
|
}
|
|
|
|
static irqreturn_t unicam_isr(int irq, void *dev)
|
|
{
|
|
struct unicam_device *unicam = dev;
|
|
unsigned int lines_done = unicam_get_lines_done(dev);
|
|
unsigned int sequence = unicam->sequence;
|
|
unsigned int i;
|
|
u32 ista, sta;
|
|
bool fe;
|
|
u64 ts;
|
|
|
|
sta = unicam_reg_read(unicam, UNICAM_STA);
|
|
/* Write value back to clear the interrupts */
|
|
unicam_reg_write(unicam, UNICAM_STA, sta);
|
|
|
|
ista = unicam_reg_read(unicam, UNICAM_ISTA);
|
|
/* Write value back to clear the interrupts */
|
|
unicam_reg_write(unicam, UNICAM_ISTA, ista);
|
|
|
|
dev_dbg(unicam->dev, "ISR: ISTA: 0x%X, STA: 0x%X, sequence %d, lines done %d\n",
|
|
ista, sta, sequence, lines_done);
|
|
|
|
if (!(sta & (UNICAM_IS | UNICAM_PI0)))
|
|
return IRQ_HANDLED;
|
|
|
|
/*
|
|
* Look for either the Frame End interrupt or the Packet Capture status
|
|
* to signal a frame end.
|
|
*/
|
|
fe = ista & UNICAM_FEI || sta & UNICAM_PI0;
|
|
|
|
/*
|
|
* We must run the frame end handler first. If we have a valid next_frm
|
|
* and we get a simultaneout FE + FS interrupt, running the FS handler
|
|
* first would null out the next_frm ptr and we would have lost the
|
|
* buffer forever.
|
|
*/
|
|
if (fe) {
|
|
/*
|
|
* Ensure we have swapped buffers already as we can't
|
|
* stop the peripheral. If no buffer is available, use a
|
|
* dummy buffer to dump out frames until we get a new buffer
|
|
* to use.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
|
|
struct unicam_node *node = &unicam->node[i];
|
|
|
|
if (!vb2_start_streaming_called(&node->buffer_queue))
|
|
continue;
|
|
|
|
/*
|
|
* If cur_frm == next_frm, it means we have not had
|
|
* a chance to swap buffers, likely due to having
|
|
* multiple interrupts occurring simultaneously (like FE
|
|
* + FS + LS). In this case, we cannot signal the buffer
|
|
* as complete, as the HW will reuse that buffer.
|
|
*/
|
|
if (node->cur_frm && node->cur_frm != node->next_frm)
|
|
unicam_process_buffer_complete(node, sequence);
|
|
node->cur_frm = node->next_frm;
|
|
}
|
|
unicam->sequence++;
|
|
}
|
|
|
|
if (ista & UNICAM_FSI) {
|
|
/*
|
|
* Timestamp is to be when the first data byte was captured,
|
|
* aka frame start.
|
|
*/
|
|
ts = ktime_get_ns();
|
|
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
|
|
struct unicam_node *node = &unicam->node[i];
|
|
|
|
if (!vb2_start_streaming_called(&node->buffer_queue))
|
|
continue;
|
|
|
|
if (node->cur_frm)
|
|
node->cur_frm->vb.vb2_buf.timestamp = ts;
|
|
else
|
|
dev_dbg(unicam->v4l2_dev.dev,
|
|
"ISR: [%d] Dropping frame, buffer not available at FS\n",
|
|
i);
|
|
/*
|
|
* Set the next frame output to go to a dummy frame
|
|
* if we have not managed to obtain another frame
|
|
* from the queue.
|
|
*/
|
|
unicam_schedule_dummy_buffer(node);
|
|
}
|
|
|
|
unicam_queue_event_sof(unicam);
|
|
}
|
|
|
|
/*
|
|
* Cannot swap buffer at frame end, there may be a race condition
|
|
* where the HW does not actually swap it if the new frame has
|
|
* already started.
|
|
*/
|
|
if (ista & (UNICAM_FSI | UNICAM_LCI) && !fe) {
|
|
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
|
|
struct unicam_node *node = &unicam->node[i];
|
|
|
|
if (!vb2_start_streaming_called(&node->buffer_queue))
|
|
continue;
|
|
|
|
spin_lock(&node->dma_queue_lock);
|
|
if (!list_empty(&node->dma_queue) && !node->next_frm)
|
|
unicam_schedule_next_buffer(node);
|
|
spin_unlock(&node->dma_queue_lock);
|
|
}
|
|
}
|
|
|
|
if (unicam_reg_read(unicam, UNICAM_ICTL) & UNICAM_FCM) {
|
|
/* Switch out of trigger mode if selected */
|
|
unicam_reg_write_field(unicam, UNICAM_ICTL, 1, UNICAM_TFC);
|
|
unicam_reg_write_field(unicam, UNICAM_ICTL, 0, UNICAM_FCM);
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void unicam_set_packing_config(struct unicam_device *unicam,
|
|
const struct unicam_format_info *fmtinfo)
|
|
{
|
|
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
|
|
u32 pack, unpack;
|
|
u32 val;
|
|
|
|
if (node->fmt.fmt.pix.pixelformat == fmtinfo->fourcc) {
|
|
unpack = UNICAM_PUM_NONE;
|
|
pack = UNICAM_PPM_NONE;
|
|
} else {
|
|
unpack = fmtinfo->unpack;
|
|
/* Repacking is always to 16bpp */
|
|
pack = UNICAM_PPM_PACK16;
|
|
}
|
|
|
|
val = 0;
|
|
unicam_set_field(&val, unpack, UNICAM_PUM_MASK);
|
|
unicam_set_field(&val, pack, UNICAM_PPM_MASK);
|
|
unicam_reg_write(unicam, UNICAM_IPIPE, val);
|
|
}
|
|
|
|
static void unicam_cfg_image_id(struct unicam_device *unicam, u8 vc, u8 dt)
|
|
{
|
|
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
|
|
/* CSI2 mode */
|
|
unicam_reg_write(unicam, UNICAM_IDI0, (vc << 6) | dt);
|
|
} else {
|
|
/* CCP2 mode */
|
|
unicam_reg_write(unicam, UNICAM_IDI0, 0x80 | dt);
|
|
}
|
|
}
|
|
|
|
static void unicam_enable_ed(struct unicam_device *unicam)
|
|
{
|
|
u32 val = unicam_reg_read(unicam, UNICAM_DCS);
|
|
|
|
unicam_set_field(&val, 2, UNICAM_EDL_MASK);
|
|
/* Do not wrap at the end of the embedded data buffer */
|
|
unicam_set_field(&val, 0, UNICAM_DBOB);
|
|
|
|
unicam_reg_write(unicam, UNICAM_DCS, val);
|
|
}
|
|
|
|
static int unicam_get_image_vc_dt(struct unicam_device *unicam,
|
|
struct v4l2_subdev_state *state,
|
|
u8 *vc, u8 *dt)
|
|
{
|
|
struct v4l2_mbus_frame_desc fd;
|
|
u32 stream;
|
|
int ret;
|
|
|
|
ret = v4l2_subdev_routing_find_opposite_end(&state->routing,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE,
|
|
0, NULL, &stream);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = v4l2_subdev_call(unicam->sensor.subdev, pad, get_frame_desc,
|
|
unicam->sensor.pad->index, &fd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Only CSI-2 supports DTs. */
|
|
if (fd.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2)
|
|
return -EINVAL;
|
|
|
|
for (unsigned int i = 0; i < fd.num_entries; ++i) {
|
|
const struct v4l2_mbus_frame_desc_entry *fde = &fd.entry[i];
|
|
|
|
if (fde->stream == stream) {
|
|
*vc = fde->bus.csi2.vc;
|
|
*dt = fde->bus.csi2.dt;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void unicam_start_rx(struct unicam_device *unicam,
|
|
struct v4l2_subdev_state *state)
|
|
{
|
|
struct unicam_node *node = &unicam->node[UNICAM_IMAGE_NODE];
|
|
const struct unicam_format_info *fmtinfo;
|
|
const struct v4l2_mbus_framefmt *fmt;
|
|
unsigned int line_int_freq;
|
|
u8 vc, dt;
|
|
u32 val;
|
|
int ret;
|
|
|
|
fmt = v4l2_subdev_state_get_format(state, UNICAM_SD_PAD_SOURCE_IMAGE, 0);
|
|
fmtinfo = unicam_find_format_by_code(fmt->code,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE);
|
|
if (WARN_ON(!fmtinfo))
|
|
return;
|
|
|
|
/*
|
|
* Enable lane clocks. The register is structured as follows:
|
|
*
|
|
* [9:8] - DAT3
|
|
* [7:6] - DAT2
|
|
* [5:4] - DAT1
|
|
* [3:2] - DAT0
|
|
* [1:0] - CLK
|
|
*
|
|
* Enabled lane must be set to b01, and disabled lanes to b00. The clock
|
|
* lane is always enabled.
|
|
*/
|
|
val = 0x155 & GENMASK(unicam->pipe.num_data_lanes * 2 + 1, 0);
|
|
unicam_clk_write(unicam, val);
|
|
|
|
/* Basic init */
|
|
unicam_reg_write(unicam, UNICAM_CTRL, UNICAM_MEM);
|
|
|
|
/* Enable analogue control, and leave in reset. */
|
|
val = UNICAM_AR;
|
|
unicam_set_field(&val, 7, UNICAM_CTATADJ_MASK);
|
|
unicam_set_field(&val, 7, UNICAM_PTATADJ_MASK);
|
|
unicam_reg_write(unicam, UNICAM_ANA, val);
|
|
usleep_range(1000, 2000);
|
|
|
|
/* Come out of reset */
|
|
unicam_reg_write_field(unicam, UNICAM_ANA, 0, UNICAM_AR);
|
|
|
|
/* Peripheral reset */
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_CPR);
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPR);
|
|
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPE);
|
|
|
|
/* Enable Rx control. */
|
|
val = unicam_reg_read(unicam, UNICAM_CTRL);
|
|
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
|
|
unicam_set_field(&val, UNICAM_CPM_CSI2, UNICAM_CPM_MASK);
|
|
unicam_set_field(&val, UNICAM_DCM_STROBE, UNICAM_DCM_MASK);
|
|
} else {
|
|
unicam_set_field(&val, UNICAM_CPM_CCP2, UNICAM_CPM_MASK);
|
|
unicam_set_field(&val, unicam->bus_flags, UNICAM_DCM_MASK);
|
|
}
|
|
/* Packet framer timeout */
|
|
unicam_set_field(&val, 0xf, UNICAM_PFT_MASK);
|
|
unicam_set_field(&val, 128, UNICAM_OET_MASK);
|
|
unicam_reg_write(unicam, UNICAM_CTRL, val);
|
|
|
|
unicam_reg_write(unicam, UNICAM_IHWIN, 0);
|
|
unicam_reg_write(unicam, UNICAM_IVWIN, 0);
|
|
|
|
/* AXI bus access QoS setup */
|
|
val = unicam_reg_read(unicam, UNICAM_PRI);
|
|
unicam_set_field(&val, 0, UNICAM_BL_MASK);
|
|
unicam_set_field(&val, 0, UNICAM_BS_MASK);
|
|
unicam_set_field(&val, 0xe, UNICAM_PP_MASK);
|
|
unicam_set_field(&val, 8, UNICAM_NP_MASK);
|
|
unicam_set_field(&val, 2, UNICAM_PT_MASK);
|
|
unicam_set_field(&val, 1, UNICAM_PE);
|
|
unicam_reg_write(unicam, UNICAM_PRI, val);
|
|
|
|
unicam_reg_write_field(unicam, UNICAM_ANA, 0, UNICAM_DDL);
|
|
|
|
/* Always start in trigger frame capture mode (UNICAM_FCM set) */
|
|
val = UNICAM_FSIE | UNICAM_FEIE | UNICAM_FCM | UNICAM_IBOB;
|
|
line_int_freq = max(fmt->height >> 2, 128);
|
|
unicam_set_field(&val, line_int_freq, UNICAM_LCIE_MASK);
|
|
unicam_reg_write(unicam, UNICAM_ICTL, val);
|
|
unicam_reg_write(unicam, UNICAM_STA, UNICAM_STA_MASK_ALL);
|
|
unicam_reg_write(unicam, UNICAM_ISTA, UNICAM_ISTA_MASK_ALL);
|
|
|
|
/* tclk_term_en */
|
|
unicam_reg_write_field(unicam, UNICAM_CLT, 2, UNICAM_CLT1_MASK);
|
|
/* tclk_settle */
|
|
unicam_reg_write_field(unicam, UNICAM_CLT, 6, UNICAM_CLT2_MASK);
|
|
/* td_term_en */
|
|
unicam_reg_write_field(unicam, UNICAM_DLT, 2, UNICAM_DLT1_MASK);
|
|
/* ths_settle */
|
|
unicam_reg_write_field(unicam, UNICAM_DLT, 6, UNICAM_DLT2_MASK);
|
|
/* trx_enable */
|
|
unicam_reg_write_field(unicam, UNICAM_DLT, 0, UNICAM_DLT3_MASK);
|
|
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_SOE);
|
|
|
|
/* Packet compare setup - required to avoid missing frame ends */
|
|
val = 0;
|
|
unicam_set_field(&val, 1, UNICAM_PCE);
|
|
unicam_set_field(&val, 1, UNICAM_GI);
|
|
unicam_set_field(&val, 1, UNICAM_CPH);
|
|
unicam_set_field(&val, 0, UNICAM_PCVC_MASK);
|
|
unicam_set_field(&val, 1, UNICAM_PCDT_MASK);
|
|
unicam_reg_write(unicam, UNICAM_CMP0, val);
|
|
|
|
/* Enable clock lane and set up terminations */
|
|
val = 0;
|
|
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
|
|
/* CSI2 */
|
|
unicam_set_field(&val, 1, UNICAM_CLE);
|
|
unicam_set_field(&val, 1, UNICAM_CLLPE);
|
|
if (!(unicam->bus_flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK)) {
|
|
unicam_set_field(&val, 1, UNICAM_CLTRE);
|
|
unicam_set_field(&val, 1, UNICAM_CLHSE);
|
|
}
|
|
} else {
|
|
/* CCP2 */
|
|
unicam_set_field(&val, 1, UNICAM_CLE);
|
|
unicam_set_field(&val, 1, UNICAM_CLHSE);
|
|
unicam_set_field(&val, 1, UNICAM_CLTRE);
|
|
}
|
|
unicam_reg_write(unicam, UNICAM_CLK, val);
|
|
|
|
/*
|
|
* Enable required data lanes with appropriate terminations.
|
|
* The same value needs to be written to UNICAM_DATn registers for
|
|
* the active lanes, and 0 for inactive ones.
|
|
*/
|
|
val = 0;
|
|
if (unicam->bus_type == V4L2_MBUS_CSI2_DPHY) {
|
|
/* CSI2 */
|
|
unicam_set_field(&val, 1, UNICAM_DLE);
|
|
unicam_set_field(&val, 1, UNICAM_DLLPE);
|
|
if (!(unicam->bus_flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK)) {
|
|
unicam_set_field(&val, 1, UNICAM_DLTRE);
|
|
unicam_set_field(&val, 1, UNICAM_DLHSE);
|
|
}
|
|
} else {
|
|
/* CCP2 */
|
|
unicam_set_field(&val, 1, UNICAM_DLE);
|
|
unicam_set_field(&val, 1, UNICAM_DLHSE);
|
|
unicam_set_field(&val, 1, UNICAM_DLTRE);
|
|
}
|
|
unicam_reg_write(unicam, UNICAM_DAT0, val);
|
|
|
|
if (unicam->pipe.num_data_lanes == 1)
|
|
val = 0;
|
|
unicam_reg_write(unicam, UNICAM_DAT1, val);
|
|
|
|
if (unicam->max_data_lanes > 2) {
|
|
/*
|
|
* Registers UNICAM_DAT2 and UNICAM_DAT3 only valid if the
|
|
* instance supports more than 2 data lanes.
|
|
*/
|
|
if (unicam->pipe.num_data_lanes == 2)
|
|
val = 0;
|
|
unicam_reg_write(unicam, UNICAM_DAT2, val);
|
|
|
|
if (unicam->pipe.num_data_lanes == 3)
|
|
val = 0;
|
|
unicam_reg_write(unicam, UNICAM_DAT3, val);
|
|
}
|
|
|
|
unicam_reg_write(unicam, UNICAM_IBLS,
|
|
node->fmt.fmt.pix.bytesperline);
|
|
unicam_wr_dma_addr(node, node->cur_frm);
|
|
unicam_set_packing_config(unicam, fmtinfo);
|
|
|
|
ret = unicam_get_image_vc_dt(unicam, state, &vc, &dt);
|
|
if (ret) {
|
|
/*
|
|
* If the source doesn't support frame descriptors, default to
|
|
* VC 0 and use the DT corresponding to the format.
|
|
*/
|
|
vc = 0;
|
|
dt = fmtinfo->csi_dt;
|
|
}
|
|
|
|
unicam_cfg_image_id(unicam, vc, dt);
|
|
|
|
val = unicam_reg_read(unicam, UNICAM_MISC);
|
|
unicam_set_field(&val, 1, UNICAM_FL0);
|
|
unicam_set_field(&val, 1, UNICAM_FL1);
|
|
unicam_reg_write(unicam, UNICAM_MISC, val);
|
|
|
|
/* Enable peripheral */
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_CPE);
|
|
|
|
/* Load image pointers */
|
|
unicam_reg_write_field(unicam, UNICAM_ICTL, 1, UNICAM_LIP_MASK);
|
|
|
|
/*
|
|
* Enable trigger only for the first frame to
|
|
* sync correctly to the FS from the source.
|
|
*/
|
|
unicam_reg_write_field(unicam, UNICAM_ICTL, 1, UNICAM_TFC);
|
|
}
|
|
|
|
static void unicam_start_metadata(struct unicam_device *unicam)
|
|
{
|
|
struct unicam_node *node = &unicam->node[UNICAM_METADATA_NODE];
|
|
|
|
unicam_enable_ed(unicam);
|
|
unicam_wr_dma_addr(node, node->cur_frm);
|
|
unicam_reg_write_field(unicam, UNICAM_DCS, 1, UNICAM_LDP);
|
|
}
|
|
|
|
static void unicam_disable(struct unicam_device *unicam)
|
|
{
|
|
/* Analogue lane control disable */
|
|
unicam_reg_write_field(unicam, UNICAM_ANA, 1, UNICAM_DDL);
|
|
|
|
/* Stop the output engine */
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_SOE);
|
|
|
|
/* Disable the data lanes. */
|
|
unicam_reg_write(unicam, UNICAM_DAT0, 0);
|
|
unicam_reg_write(unicam, UNICAM_DAT1, 0);
|
|
|
|
if (unicam->max_data_lanes > 2) {
|
|
unicam_reg_write(unicam, UNICAM_DAT2, 0);
|
|
unicam_reg_write(unicam, UNICAM_DAT3, 0);
|
|
}
|
|
|
|
/* Peripheral reset */
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 1, UNICAM_CPR);
|
|
usleep_range(50, 100);
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPR);
|
|
|
|
/* Disable peripheral */
|
|
unicam_reg_write_field(unicam, UNICAM_CTRL, 0, UNICAM_CPE);
|
|
|
|
/* Clear ED setup */
|
|
unicam_reg_write(unicam, UNICAM_DCS, 0);
|
|
|
|
/* Disable all lane clocks */
|
|
unicam_clk_write(unicam, 0);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* V4L2 subdev operations
|
|
*/
|
|
|
|
static int __unicam_subdev_set_routing(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state,
|
|
struct v4l2_subdev_krouting *routing)
|
|
{
|
|
struct v4l2_subdev_route *route;
|
|
int ret;
|
|
|
|
ret = v4l2_subdev_routing_validate(sd, routing,
|
|
V4L2_SUBDEV_ROUTING_ONLY_1_TO_1);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = v4l2_subdev_set_routing(sd, state, routing);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for_each_active_route(&state->routing, route) {
|
|
const struct v4l2_mbus_framefmt *def_fmt;
|
|
struct v4l2_mbus_framefmt *fmt;
|
|
|
|
if (route->source_pad == UNICAM_SD_PAD_SOURCE_IMAGE)
|
|
def_fmt = &unicam_default_image_format;
|
|
else
|
|
def_fmt = &unicam_default_meta_format;
|
|
|
|
fmt = v4l2_subdev_state_get_format(state, route->sink_pad,
|
|
route->sink_stream);
|
|
*fmt = *def_fmt;
|
|
fmt = v4l2_subdev_state_get_format(state, route->source_pad,
|
|
route->source_stream);
|
|
*fmt = *def_fmt;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_subdev_init_state(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state)
|
|
{
|
|
struct v4l2_subdev_route routes[] = {
|
|
{
|
|
.sink_pad = UNICAM_SD_PAD_SINK,
|
|
.sink_stream = 0,
|
|
.source_pad = UNICAM_SD_PAD_SOURCE_IMAGE,
|
|
.source_stream = 0,
|
|
.flags = V4L2_SUBDEV_ROUTE_FL_ACTIVE,
|
|
},
|
|
};
|
|
|
|
struct v4l2_subdev_krouting routing = {
|
|
.len_routes = ARRAY_SIZE(routes),
|
|
.num_routes = ARRAY_SIZE(routes),
|
|
.routes = routes,
|
|
};
|
|
|
|
/* Initialize routing to single route to the fist source pad. */
|
|
return __unicam_subdev_set_routing(sd, state, &routing);
|
|
}
|
|
|
|
static int unicam_subdev_enum_mbus_code(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state,
|
|
struct v4l2_subdev_mbus_code_enum *code)
|
|
{
|
|
u32 pad, stream;
|
|
int ret;
|
|
|
|
ret = v4l2_subdev_routing_find_opposite_end(&state->routing,
|
|
code->pad, code->stream,
|
|
&pad, &stream);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (unicam_sd_pad_is_source(code->pad)) {
|
|
/* No transcoding, source and sink codes must match. */
|
|
const struct v4l2_mbus_framefmt *fmt;
|
|
|
|
fmt = v4l2_subdev_state_get_format(state, pad, stream);
|
|
if (!fmt)
|
|
return -EINVAL;
|
|
|
|
if (code->index > 0)
|
|
return -EINVAL;
|
|
|
|
code->code = fmt->code;
|
|
} else {
|
|
const struct unicam_format_info *formats;
|
|
unsigned int num_formats;
|
|
|
|
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
|
|
formats = unicam_image_formats;
|
|
num_formats = ARRAY_SIZE(unicam_image_formats);
|
|
} else {
|
|
formats = unicam_meta_formats;
|
|
num_formats = ARRAY_SIZE(unicam_meta_formats);
|
|
}
|
|
|
|
if (code->index >= num_formats)
|
|
return -EINVAL;
|
|
|
|
code->code = formats[code->index].code;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_subdev_enum_frame_size(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state,
|
|
struct v4l2_subdev_frame_size_enum *fse)
|
|
{
|
|
u32 pad, stream;
|
|
int ret;
|
|
|
|
if (fse->index > 0)
|
|
return -EINVAL;
|
|
|
|
ret = v4l2_subdev_routing_find_opposite_end(&state->routing, fse->pad,
|
|
fse->stream, &pad,
|
|
&stream);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (unicam_sd_pad_is_source(fse->pad)) {
|
|
/* No transcoding, source and sink formats must match. */
|
|
const struct v4l2_mbus_framefmt *fmt;
|
|
|
|
fmt = v4l2_subdev_state_get_format(state, pad, stream);
|
|
if (!fmt)
|
|
return -EINVAL;
|
|
|
|
if (fse->code != fmt->code)
|
|
return -EINVAL;
|
|
|
|
fse->min_width = fmt->width;
|
|
fse->max_width = fmt->width;
|
|
fse->min_height = fmt->height;
|
|
fse->max_height = fmt->height;
|
|
} else {
|
|
const struct unicam_format_info *fmtinfo;
|
|
|
|
fmtinfo = unicam_find_format_by_code(fse->code, pad);
|
|
if (!fmtinfo)
|
|
return -EINVAL;
|
|
|
|
if (pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
|
|
fse->min_width = UNICAM_IMAGE_MIN_WIDTH;
|
|
fse->max_width = UNICAM_IMAGE_MAX_WIDTH;
|
|
fse->min_height = UNICAM_IMAGE_MIN_HEIGHT;
|
|
fse->max_height = UNICAM_IMAGE_MAX_HEIGHT;
|
|
} else {
|
|
fse->min_width = UNICAM_META_MIN_WIDTH;
|
|
fse->max_width = UNICAM_META_MAX_WIDTH;
|
|
fse->min_height = UNICAM_META_MIN_HEIGHT;
|
|
fse->max_height = UNICAM_META_MAX_HEIGHT;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_subdev_set_format(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state,
|
|
struct v4l2_subdev_format *format)
|
|
{
|
|
struct unicam_device *unicam = sd_to_unicam_device(sd);
|
|
struct v4l2_mbus_framefmt *sink_format, *source_format;
|
|
const struct unicam_format_info *fmtinfo;
|
|
u32 source_pad, source_stream;
|
|
int ret;
|
|
|
|
if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE &&
|
|
unicam->subdev.enabled_streams)
|
|
return -EBUSY;
|
|
|
|
/* No transcoding, source and sink formats must match. */
|
|
if (unicam_sd_pad_is_source(format->pad))
|
|
return v4l2_subdev_get_fmt(sd, state, format);
|
|
|
|
/*
|
|
* Allowed formats for the stream on the sink pad depend on what source
|
|
* pad the stream is routed to. Find the corresponding source pad and
|
|
* use it to validate the media bus code.
|
|
*/
|
|
ret = v4l2_subdev_routing_find_opposite_end(&state->routing,
|
|
format->pad, format->stream,
|
|
&source_pad, &source_stream);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fmtinfo = unicam_find_format_by_code(format->format.code, source_pad);
|
|
if (!fmtinfo) {
|
|
fmtinfo = source_pad == UNICAM_SD_PAD_SOURCE_IMAGE
|
|
? &unicam_image_formats[0] : &unicam_meta_formats[0];
|
|
format->format.code = fmtinfo->code;
|
|
}
|
|
|
|
if (source_pad == UNICAM_SD_PAD_SOURCE_IMAGE) {
|
|
format->format.width = clamp_t(unsigned int,
|
|
format->format.width,
|
|
UNICAM_IMAGE_MIN_WIDTH,
|
|
UNICAM_IMAGE_MAX_WIDTH);
|
|
format->format.height = clamp_t(unsigned int,
|
|
format->format.height,
|
|
UNICAM_IMAGE_MIN_HEIGHT,
|
|
UNICAM_IMAGE_MAX_HEIGHT);
|
|
format->format.field = V4L2_FIELD_NONE;
|
|
} else {
|
|
format->format.width = clamp_t(unsigned int,
|
|
format->format.width,
|
|
UNICAM_META_MIN_WIDTH,
|
|
UNICAM_META_MAX_WIDTH);
|
|
format->format.height = clamp_t(unsigned int,
|
|
format->format.height,
|
|
UNICAM_META_MIN_HEIGHT,
|
|
UNICAM_META_MAX_HEIGHT);
|
|
format->format.field = V4L2_FIELD_NONE;
|
|
|
|
/* Colorspace don't apply to metadata. */
|
|
format->format.colorspace = 0;
|
|
format->format.ycbcr_enc = 0;
|
|
format->format.quantization = 0;
|
|
format->format.xfer_func = 0;
|
|
}
|
|
|
|
sink_format = v4l2_subdev_state_get_format(state, format->pad,
|
|
format->stream);
|
|
source_format = v4l2_subdev_state_get_format(state, source_pad,
|
|
source_stream);
|
|
*sink_format = format->format;
|
|
*source_format = format->format;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_subdev_set_routing(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state,
|
|
enum v4l2_subdev_format_whence which,
|
|
struct v4l2_subdev_krouting *routing)
|
|
{
|
|
struct unicam_device *unicam = sd_to_unicam_device(sd);
|
|
|
|
if (which == V4L2_SUBDEV_FORMAT_ACTIVE && unicam->subdev.enabled_streams)
|
|
return -EBUSY;
|
|
|
|
return __unicam_subdev_set_routing(sd, state, routing);
|
|
}
|
|
|
|
static int unicam_sd_enable_streams(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state, u32 pad,
|
|
u64 streams_mask)
|
|
{
|
|
struct unicam_device *unicam = sd_to_unicam_device(sd);
|
|
u32 other_pad, other_stream;
|
|
int ret;
|
|
|
|
if (!unicam->subdev.enabled_streams) {
|
|
/* Configure and start Unicam. */
|
|
unicam->sequence = 0;
|
|
|
|
if (unicam->pipe.nodes & BIT(UNICAM_METADATA_NODE))
|
|
unicam_start_metadata(unicam);
|
|
|
|
unicam_start_rx(unicam, state);
|
|
}
|
|
|
|
ret = v4l2_subdev_routing_find_opposite_end(&state->routing, pad, 0,
|
|
&other_pad, &other_stream);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = v4l2_subdev_enable_streams(unicam->sensor.subdev,
|
|
unicam->sensor.pad->index,
|
|
BIT(other_stream));
|
|
if (ret) {
|
|
dev_err(unicam->dev, "stream on failed in subdev\n");
|
|
return ret;
|
|
}
|
|
|
|
unicam->subdev.enabled_streams |= BIT(other_stream);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_sd_disable_streams(struct v4l2_subdev *sd,
|
|
struct v4l2_subdev_state *state, u32 pad,
|
|
u64 streams_mask)
|
|
{
|
|
struct unicam_device *unicam = sd_to_unicam_device(sd);
|
|
u32 other_pad, other_stream;
|
|
int ret;
|
|
|
|
ret = v4l2_subdev_routing_find_opposite_end(&state->routing, pad, 0,
|
|
&other_pad, &other_stream);
|
|
if (ret)
|
|
return ret;
|
|
|
|
v4l2_subdev_disable_streams(unicam->sensor.subdev,
|
|
unicam->sensor.pad->index,
|
|
BIT(other_stream));
|
|
|
|
unicam->subdev.enabled_streams &= ~BIT(other_stream);
|
|
|
|
if (!unicam->subdev.enabled_streams)
|
|
unicam_disable(unicam);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct v4l2_subdev_pad_ops unicam_subdev_pad_ops = {
|
|
.enum_mbus_code = unicam_subdev_enum_mbus_code,
|
|
.enum_frame_size = unicam_subdev_enum_frame_size,
|
|
.get_fmt = v4l2_subdev_get_fmt,
|
|
.set_fmt = unicam_subdev_set_format,
|
|
.set_routing = unicam_subdev_set_routing,
|
|
.enable_streams = unicam_sd_enable_streams,
|
|
.disable_streams = unicam_sd_disable_streams,
|
|
};
|
|
|
|
static const struct v4l2_subdev_ops unicam_subdev_ops = {
|
|
.pad = &unicam_subdev_pad_ops,
|
|
};
|
|
|
|
static const struct v4l2_subdev_internal_ops unicam_subdev_internal_ops = {
|
|
.init_state = unicam_subdev_init_state,
|
|
};
|
|
|
|
static const struct media_entity_operations unicam_subdev_media_ops = {
|
|
.link_validate = v4l2_subdev_link_validate,
|
|
.has_pad_interdep = v4l2_subdev_has_pad_interdep,
|
|
};
|
|
|
|
static int unicam_subdev_init(struct unicam_device *unicam)
|
|
{
|
|
struct v4l2_subdev *sd = &unicam->subdev.sd;
|
|
int ret;
|
|
|
|
v4l2_subdev_init(sd, &unicam_subdev_ops);
|
|
sd->internal_ops = &unicam_subdev_internal_ops;
|
|
v4l2_set_subdevdata(sd, unicam);
|
|
|
|
sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
|
|
sd->entity.ops = &unicam_subdev_media_ops;
|
|
sd->dev = unicam->dev;
|
|
sd->owner = THIS_MODULE;
|
|
sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_STREAMS;
|
|
|
|
strscpy(sd->name, "unicam", sizeof(sd->name));
|
|
|
|
unicam->subdev.pads[UNICAM_SD_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
|
|
unicam->subdev.pads[UNICAM_SD_PAD_SOURCE_IMAGE].flags = MEDIA_PAD_FL_SOURCE;
|
|
unicam->subdev.pads[UNICAM_SD_PAD_SOURCE_METADATA].flags = MEDIA_PAD_FL_SOURCE;
|
|
|
|
ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(unicam->subdev.pads),
|
|
unicam->subdev.pads);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Failed to initialize media entity: %d\n",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = v4l2_subdev_init_finalize(sd);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Failed to initialize subdev: %d\n", ret);
|
|
goto err_entity;
|
|
}
|
|
|
|
ret = v4l2_device_register_subdev(&unicam->v4l2_dev, sd);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Failed to register subdev: %d\n", ret);
|
|
goto err_subdev;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_subdev:
|
|
v4l2_subdev_cleanup(sd);
|
|
err_entity:
|
|
media_entity_cleanup(&sd->entity);
|
|
return ret;
|
|
}
|
|
|
|
static void unicam_subdev_cleanup(struct unicam_device *unicam)
|
|
{
|
|
v4l2_subdev_cleanup(&unicam->subdev.sd);
|
|
media_entity_cleanup(&unicam->subdev.sd.entity);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Videobuf2 queue operations
|
|
*/
|
|
|
|
static int unicam_queue_setup(struct vb2_queue *vq, unsigned int *nbuffers,
|
|
unsigned int *nplanes, unsigned int sizes[],
|
|
struct device *alloc_devs[])
|
|
{
|
|
struct unicam_node *node = vb2_get_drv_priv(vq);
|
|
u32 size = is_image_node(node) ? node->fmt.fmt.pix.sizeimage
|
|
: node->fmt.fmt.meta.buffersize;
|
|
|
|
if (*nplanes) {
|
|
if (sizes[0] < size) {
|
|
dev_dbg(node->dev->dev, "sizes[0] %i < size %u\n",
|
|
sizes[0], size);
|
|
return -EINVAL;
|
|
}
|
|
size = sizes[0];
|
|
}
|
|
|
|
*nplanes = 1;
|
|
sizes[0] = size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_buffer_prepare(struct vb2_buffer *vb)
|
|
{
|
|
struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue);
|
|
struct unicam_buffer *buf = to_unicam_buffer(vb);
|
|
u32 size = is_image_node(node) ? node->fmt.fmt.pix.sizeimage
|
|
: node->fmt.fmt.meta.buffersize;
|
|
|
|
if (vb2_plane_size(vb, 0) < size) {
|
|
dev_dbg(node->dev->dev,
|
|
"data will not fit into plane (%lu < %u)\n",
|
|
vb2_plane_size(vb, 0), size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
buf->dma_addr = vb2_dma_contig_plane_dma_addr(&buf->vb.vb2_buf, 0);
|
|
buf->size = size;
|
|
|
|
vb2_set_plane_payload(&buf->vb.vb2_buf, 0, size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void unicam_return_buffers(struct unicam_node *node,
|
|
enum vb2_buffer_state state)
|
|
{
|
|
struct unicam_buffer *buf, *tmp;
|
|
|
|
list_for_each_entry_safe(buf, tmp, &node->dma_queue, list) {
|
|
list_del(&buf->list);
|
|
vb2_buffer_done(&buf->vb.vb2_buf, state);
|
|
}
|
|
|
|
if (node->cur_frm)
|
|
vb2_buffer_done(&node->cur_frm->vb.vb2_buf,
|
|
state);
|
|
if (node->next_frm && node->cur_frm != node->next_frm)
|
|
vb2_buffer_done(&node->next_frm->vb.vb2_buf,
|
|
state);
|
|
|
|
node->cur_frm = NULL;
|
|
node->next_frm = NULL;
|
|
}
|
|
|
|
static int unicam_num_data_lanes(struct unicam_device *unicam)
|
|
{
|
|
struct v4l2_mbus_config mbus_config = { 0 };
|
|
unsigned int num_data_lanes;
|
|
int ret;
|
|
|
|
if (unicam->bus_type != V4L2_MBUS_CSI2_DPHY)
|
|
return unicam->max_data_lanes;
|
|
|
|
ret = v4l2_subdev_call(unicam->sensor.subdev, pad, get_mbus_config,
|
|
unicam->sensor.pad->index, &mbus_config);
|
|
if (ret == -ENOIOCTLCMD)
|
|
return unicam->max_data_lanes;
|
|
|
|
if (ret < 0) {
|
|
dev_err(unicam->dev, "Failed to get mbus config: %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
num_data_lanes = mbus_config.bus.mipi_csi2.num_data_lanes;
|
|
|
|
if (num_data_lanes != 1 && num_data_lanes != 2 && num_data_lanes != 4) {
|
|
dev_err(unicam->dev,
|
|
"Device %s has requested %u data lanes, invalid\n",
|
|
unicam->sensor.subdev->name, num_data_lanes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (num_data_lanes > unicam->max_data_lanes) {
|
|
dev_err(unicam->dev,
|
|
"Device %s has requested %u data lanes, >%u configured in DT\n",
|
|
unicam->sensor.subdev->name, num_data_lanes,
|
|
unicam->max_data_lanes);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return num_data_lanes;
|
|
}
|
|
|
|
static int unicam_start_streaming(struct vb2_queue *vq, unsigned int count)
|
|
{
|
|
struct unicam_node *node = vb2_get_drv_priv(vq);
|
|
struct unicam_device *unicam = node->dev;
|
|
struct unicam_buffer *buf;
|
|
struct media_pipeline_pad_iter iter;
|
|
struct media_pad *pad;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
dev_dbg(unicam->dev, "Starting stream on %s device\n",
|
|
is_metadata_node(node) ? "metadata" : "image");
|
|
|
|
/*
|
|
* Start the pipeline. This validates all links, and populates the
|
|
* pipeline structure.
|
|
*/
|
|
ret = video_device_pipeline_start(&node->video_dev, &unicam->pipe.pipe);
|
|
if (ret < 0) {
|
|
dev_dbg(unicam->dev, "Failed to start media pipeline: %d\n", ret);
|
|
goto err_buffers;
|
|
}
|
|
|
|
/*
|
|
* Determine which video nodes are included in the pipeline, and get the
|
|
* number of data lanes.
|
|
*/
|
|
if (unicam->pipe.pipe.start_count == 1) {
|
|
unicam->pipe.nodes = 0;
|
|
|
|
media_pipeline_for_each_pad(&unicam->pipe.pipe, &iter, pad) {
|
|
if (pad->entity != &unicam->subdev.sd.entity)
|
|
continue;
|
|
|
|
if (pad->index == UNICAM_SD_PAD_SOURCE_IMAGE)
|
|
unicam->pipe.nodes |= BIT(UNICAM_IMAGE_NODE);
|
|
else if (pad->index == UNICAM_SD_PAD_SOURCE_METADATA)
|
|
unicam->pipe.nodes |= BIT(UNICAM_METADATA_NODE);
|
|
}
|
|
|
|
if (!(unicam->pipe.nodes & BIT(UNICAM_IMAGE_NODE))) {
|
|
dev_dbg(unicam->dev,
|
|
"Pipeline does not include image node\n");
|
|
ret = -EPIPE;
|
|
goto err_pipeline;
|
|
}
|
|
|
|
ret = unicam_num_data_lanes(unicam);
|
|
if (ret < 0)
|
|
goto err_pipeline;
|
|
|
|
unicam->pipe.num_data_lanes = ret;
|
|
|
|
dev_dbg(unicam->dev, "Running with %u data lanes, nodes %u\n",
|
|
unicam->pipe.num_data_lanes, unicam->pipe.nodes);
|
|
}
|
|
|
|
/* Arm the node with the first buffer from the DMA queue. */
|
|
spin_lock_irqsave(&node->dma_queue_lock, flags);
|
|
buf = list_first_entry(&node->dma_queue, struct unicam_buffer, list);
|
|
node->cur_frm = buf;
|
|
node->next_frm = buf;
|
|
list_del(&buf->list);
|
|
spin_unlock_irqrestore(&node->dma_queue_lock, flags);
|
|
|
|
/*
|
|
* Wait for all the video devices in the pipeline to have been started
|
|
* before starting the hardware. In the general case, this would
|
|
* prevent capturing multiple streams independently. However, the
|
|
* Unicam DMA engines are not generic, they have been designed to
|
|
* capture image data and embedded data from the same camera sensor.
|
|
* Not only does the main use case not benefit from independent
|
|
* capture, it requires proper synchronization of the streams at start
|
|
* time.
|
|
*/
|
|
if (unicam->pipe.pipe.start_count < hweight32(unicam->pipe.nodes))
|
|
return 0;
|
|
|
|
ret = pm_runtime_resume_and_get(unicam->dev);
|
|
if (ret < 0) {
|
|
dev_err(unicam->dev, "PM runtime resume failed: %d\n", ret);
|
|
goto err_pipeline;
|
|
}
|
|
|
|
/* Enable the streams on the source. */
|
|
ret = v4l2_subdev_enable_streams(&unicam->subdev.sd,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE,
|
|
BIT(0));
|
|
if (ret < 0) {
|
|
dev_err(unicam->dev, "stream on failed in subdev\n");
|
|
goto err_pm_put;
|
|
}
|
|
|
|
if (unicam->pipe.nodes & BIT(UNICAM_METADATA_NODE)) {
|
|
ret = v4l2_subdev_enable_streams(&unicam->subdev.sd,
|
|
UNICAM_SD_PAD_SOURCE_METADATA,
|
|
BIT(0));
|
|
if (ret < 0) {
|
|
dev_err(unicam->dev, "stream on failed in subdev\n");
|
|
goto err_disable_streams;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_disable_streams:
|
|
v4l2_subdev_disable_streams(&unicam->subdev.sd,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE, BIT(0));
|
|
err_pm_put:
|
|
pm_runtime_put_sync(unicam->dev);
|
|
err_pipeline:
|
|
video_device_pipeline_stop(&node->video_dev);
|
|
err_buffers:
|
|
unicam_return_buffers(node, VB2_BUF_STATE_QUEUED);
|
|
return ret;
|
|
}
|
|
|
|
static void unicam_stop_streaming(struct vb2_queue *vq)
|
|
{
|
|
struct unicam_node *node = vb2_get_drv_priv(vq);
|
|
struct unicam_device *unicam = node->dev;
|
|
|
|
/* Stop the hardware when the first video device gets stopped. */
|
|
if (unicam->pipe.pipe.start_count == hweight32(unicam->pipe.nodes)) {
|
|
if (unicam->pipe.nodes & BIT(UNICAM_METADATA_NODE))
|
|
v4l2_subdev_disable_streams(&unicam->subdev.sd,
|
|
UNICAM_SD_PAD_SOURCE_METADATA,
|
|
BIT(0));
|
|
|
|
v4l2_subdev_disable_streams(&unicam->subdev.sd,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE,
|
|
BIT(0));
|
|
|
|
pm_runtime_put(unicam->dev);
|
|
}
|
|
|
|
video_device_pipeline_stop(&node->video_dev);
|
|
|
|
/* Clear all queued buffers for the node */
|
|
unicam_return_buffers(node, VB2_BUF_STATE_ERROR);
|
|
}
|
|
|
|
static void unicam_buffer_queue(struct vb2_buffer *vb)
|
|
{
|
|
struct unicam_node *node = vb2_get_drv_priv(vb->vb2_queue);
|
|
struct unicam_buffer *buf = to_unicam_buffer(vb);
|
|
|
|
spin_lock_irq(&node->dma_queue_lock);
|
|
list_add_tail(&buf->list, &node->dma_queue);
|
|
spin_unlock_irq(&node->dma_queue_lock);
|
|
}
|
|
|
|
static const struct vb2_ops unicam_video_qops = {
|
|
.queue_setup = unicam_queue_setup,
|
|
.buf_prepare = unicam_buffer_prepare,
|
|
.start_streaming = unicam_start_streaming,
|
|
.stop_streaming = unicam_stop_streaming,
|
|
.buf_queue = unicam_buffer_queue,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* V4L2 video device operations
|
|
*/
|
|
|
|
static int unicam_querycap(struct file *file, void *priv,
|
|
struct v4l2_capability *cap)
|
|
{
|
|
strscpy(cap->driver, UNICAM_MODULE_NAME, sizeof(cap->driver));
|
|
strscpy(cap->card, UNICAM_MODULE_NAME, sizeof(cap->card));
|
|
|
|
cap->capabilities |= V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_META_CAPTURE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_enum_fmt_vid(struct file *file, void *priv,
|
|
struct v4l2_fmtdesc *f)
|
|
{
|
|
unsigned int index;
|
|
unsigned int i;
|
|
|
|
for (i = 0, index = 0; i < ARRAY_SIZE(unicam_image_formats); i++) {
|
|
if (f->mbus_code && unicam_image_formats[i].code != f->mbus_code)
|
|
continue;
|
|
|
|
if (index == f->index) {
|
|
f->pixelformat = unicam_image_formats[i].fourcc;
|
|
return 0;
|
|
}
|
|
|
|
index++;
|
|
|
|
if (!unicam_image_formats[i].unpacked_fourcc)
|
|
continue;
|
|
|
|
if (index == f->index) {
|
|
f->pixelformat = unicam_image_formats[i].unpacked_fourcc;
|
|
return 0;
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int unicam_g_fmt_vid(struct file *file, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
|
|
*f = node->fmt;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __unicam_try_fmt_vid(struct unicam_node *node,
|
|
struct v4l2_pix_format *pix)
|
|
{
|
|
const struct unicam_format_info *fmtinfo;
|
|
|
|
/*
|
|
* Default to the first format if the requested pixel format code isn't
|
|
* supported.
|
|
*/
|
|
fmtinfo = unicam_find_format_by_fourcc(pix->pixelformat,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE);
|
|
if (!fmtinfo) {
|
|
fmtinfo = &unicam_image_formats[0];
|
|
pix->pixelformat = fmtinfo->fourcc;
|
|
}
|
|
|
|
unicam_calc_image_size_bpl(node->dev, fmtinfo, pix);
|
|
|
|
if (pix->field == V4L2_FIELD_ANY)
|
|
pix->field = V4L2_FIELD_NONE;
|
|
}
|
|
|
|
static int unicam_try_fmt_vid(struct file *file, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
|
|
__unicam_try_fmt_vid(node, &f->fmt.pix);
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_s_fmt_vid(struct file *file, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
|
|
if (vb2_is_busy(&node->buffer_queue))
|
|
return -EBUSY;
|
|
|
|
__unicam_try_fmt_vid(node, &f->fmt.pix);
|
|
node->fmt = *f;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_enum_fmt_meta(struct file *file, void *priv,
|
|
struct v4l2_fmtdesc *f)
|
|
{
|
|
unsigned int i, index;
|
|
|
|
for (i = 0, index = 0; i < ARRAY_SIZE(unicam_meta_formats); i++) {
|
|
if (f->mbus_code && unicam_meta_formats[i].code != f->mbus_code)
|
|
continue;
|
|
|
|
if (index == f->index) {
|
|
f->pixelformat = unicam_meta_formats[i].fourcc;
|
|
f->type = V4L2_BUF_TYPE_META_CAPTURE;
|
|
f->flags = V4L2_FMT_FLAG_META_LINE_BASED;
|
|
return 0;
|
|
}
|
|
|
|
index++;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int unicam_g_fmt_meta(struct file *file, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
|
|
f->fmt.meta = node->fmt.fmt.meta;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct unicam_format_info *
|
|
__unicam_try_fmt_meta(struct unicam_node *node, struct v4l2_meta_format *meta)
|
|
{
|
|
const struct unicam_format_info *fmtinfo;
|
|
|
|
/*
|
|
* Default to the first format if the requested pixel format code isn't
|
|
* supported.
|
|
*/
|
|
fmtinfo = unicam_find_format_by_fourcc(meta->dataformat,
|
|
UNICAM_SD_PAD_SOURCE_METADATA);
|
|
if (!fmtinfo) {
|
|
fmtinfo = &unicam_meta_formats[0];
|
|
meta->dataformat = fmtinfo->fourcc;
|
|
}
|
|
|
|
unicam_calc_meta_size_bpl(node->dev, fmtinfo, meta);
|
|
|
|
return fmtinfo;
|
|
}
|
|
|
|
static int unicam_try_fmt_meta(struct file *file, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
|
|
__unicam_try_fmt_meta(node, &f->fmt.meta);
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_s_fmt_meta(struct file *file, void *priv,
|
|
struct v4l2_format *f)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
|
|
if (vb2_is_busy(&node->buffer_queue))
|
|
return -EBUSY;
|
|
|
|
__unicam_try_fmt_meta(node, &f->fmt.meta);
|
|
node->fmt = *f;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_enum_framesizes(struct file *file, void *fh,
|
|
struct v4l2_frmsizeenum *fsize)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
int ret = -EINVAL;
|
|
|
|
if (fsize->index > 0)
|
|
return ret;
|
|
|
|
if (is_image_node(node)) {
|
|
if (!unicam_find_format_by_fourcc(fsize->pixel_format,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE))
|
|
return ret;
|
|
|
|
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
|
|
fsize->stepwise.min_width = UNICAM_IMAGE_MIN_WIDTH;
|
|
fsize->stepwise.max_width = UNICAM_IMAGE_MAX_WIDTH;
|
|
fsize->stepwise.step_width = 1;
|
|
fsize->stepwise.min_height = UNICAM_IMAGE_MIN_HEIGHT;
|
|
fsize->stepwise.max_height = UNICAM_IMAGE_MAX_HEIGHT;
|
|
fsize->stepwise.step_height = 1;
|
|
} else {
|
|
if (!unicam_find_format_by_fourcc(fsize->pixel_format,
|
|
UNICAM_SD_PAD_SOURCE_METADATA))
|
|
return ret;
|
|
|
|
fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
|
|
fsize->stepwise.min_width = UNICAM_META_MIN_WIDTH;
|
|
fsize->stepwise.max_width = UNICAM_META_MAX_WIDTH;
|
|
fsize->stepwise.step_width = 1;
|
|
fsize->stepwise.min_height = UNICAM_META_MIN_HEIGHT;
|
|
fsize->stepwise.max_height = UNICAM_META_MAX_HEIGHT;
|
|
fsize->stepwise.step_height = 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_log_status(struct file *file, void *fh)
|
|
{
|
|
struct unicam_node *node = video_drvdata(file);
|
|
struct unicam_device *unicam = node->dev;
|
|
u32 reg;
|
|
|
|
/* status for sub devices */
|
|
v4l2_device_call_all(&unicam->v4l2_dev, 0, core, log_status);
|
|
|
|
dev_info(unicam->dev, "-----Receiver status-----\n");
|
|
dev_info(unicam->dev, "V4L2 width/height: %ux%u\n",
|
|
node->fmt.fmt.pix.width, node->fmt.fmt.pix.height);
|
|
dev_info(unicam->dev, "V4L2 format: %08x\n",
|
|
node->fmt.fmt.pix.pixelformat);
|
|
reg = unicam_reg_read(unicam, UNICAM_IPIPE);
|
|
dev_info(unicam->dev, "Unpacking/packing: %u / %u\n",
|
|
unicam_get_field(reg, UNICAM_PUM_MASK),
|
|
unicam_get_field(reg, UNICAM_PPM_MASK));
|
|
dev_info(unicam->dev, "----Live data----\n");
|
|
dev_info(unicam->dev, "Programmed stride: %4u\n",
|
|
unicam_reg_read(unicam, UNICAM_IBLS));
|
|
dev_info(unicam->dev, "Detected resolution: %ux%u\n",
|
|
unicam_reg_read(unicam, UNICAM_IHSTA),
|
|
unicam_reg_read(unicam, UNICAM_IVSTA));
|
|
dev_info(unicam->dev, "Write pointer: %08x\n",
|
|
unicam_reg_read(unicam, UNICAM_IBWP));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_subscribe_event(struct v4l2_fh *fh,
|
|
const struct v4l2_event_subscription *sub)
|
|
{
|
|
switch (sub->type) {
|
|
case V4L2_EVENT_FRAME_SYNC:
|
|
return v4l2_event_subscribe(fh, sub, 2, NULL);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static const struct v4l2_ioctl_ops unicam_ioctl_ops = {
|
|
.vidioc_querycap = unicam_querycap,
|
|
|
|
.vidioc_enum_fmt_vid_cap = unicam_enum_fmt_vid,
|
|
.vidioc_g_fmt_vid_cap = unicam_g_fmt_vid,
|
|
.vidioc_try_fmt_vid_cap = unicam_try_fmt_vid,
|
|
.vidioc_s_fmt_vid_cap = unicam_s_fmt_vid,
|
|
|
|
.vidioc_enum_fmt_meta_cap = unicam_enum_fmt_meta,
|
|
.vidioc_g_fmt_meta_cap = unicam_g_fmt_meta,
|
|
.vidioc_try_fmt_meta_cap = unicam_try_fmt_meta,
|
|
.vidioc_s_fmt_meta_cap = unicam_s_fmt_meta,
|
|
|
|
.vidioc_enum_framesizes = unicam_enum_framesizes,
|
|
|
|
.vidioc_reqbufs = vb2_ioctl_reqbufs,
|
|
.vidioc_create_bufs = vb2_ioctl_create_bufs,
|
|
.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
|
|
.vidioc_querybuf = vb2_ioctl_querybuf,
|
|
.vidioc_qbuf = vb2_ioctl_qbuf,
|
|
.vidioc_dqbuf = vb2_ioctl_dqbuf,
|
|
.vidioc_expbuf = vb2_ioctl_expbuf,
|
|
.vidioc_streamon = vb2_ioctl_streamon,
|
|
.vidioc_streamoff = vb2_ioctl_streamoff,
|
|
|
|
.vidioc_log_status = unicam_log_status,
|
|
.vidioc_subscribe_event = unicam_subscribe_event,
|
|
.vidioc_unsubscribe_event = v4l2_event_unsubscribe,
|
|
};
|
|
|
|
/* unicam capture driver file operations */
|
|
static const struct v4l2_file_operations unicam_fops = {
|
|
.owner = THIS_MODULE,
|
|
.open = v4l2_fh_open,
|
|
.release = vb2_fop_release,
|
|
.poll = vb2_fop_poll,
|
|
.unlocked_ioctl = video_ioctl2,
|
|
.mmap = vb2_fop_mmap,
|
|
};
|
|
|
|
static int unicam_video_link_validate(struct media_link *link)
|
|
{
|
|
struct video_device *vdev =
|
|
media_entity_to_video_device(link->sink->entity);
|
|
struct v4l2_subdev *sd =
|
|
media_entity_to_v4l2_subdev(link->source->entity);
|
|
struct unicam_node *node = video_get_drvdata(vdev);
|
|
const u32 pad = is_image_node(node) ? UNICAM_SD_PAD_SOURCE_IMAGE
|
|
: UNICAM_SD_PAD_SOURCE_METADATA;
|
|
const struct v4l2_mbus_framefmt *format;
|
|
struct v4l2_subdev_state *state;
|
|
int ret = 0;
|
|
|
|
state = v4l2_subdev_lock_and_get_active_state(sd);
|
|
|
|
format = v4l2_subdev_state_get_format(state, pad, 0);
|
|
if (!format) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
if (is_image_node(node)) {
|
|
const struct v4l2_pix_format *fmt = &node->fmt.fmt.pix;
|
|
const struct unicam_format_info *fmtinfo;
|
|
|
|
fmtinfo = unicam_find_format_by_fourcc(fmt->pixelformat,
|
|
UNICAM_SD_PAD_SOURCE_IMAGE);
|
|
if (WARN_ON(!fmtinfo)) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
if (fmtinfo->code != format->code ||
|
|
fmt->height != format->height ||
|
|
fmt->width != format->width ||
|
|
fmt->field != format->field) {
|
|
dev_dbg(node->dev->dev,
|
|
"image: (%u x %u) 0x%08x %s != (%u x %u) 0x%08x %s\n",
|
|
fmt->width, fmt->height, fmtinfo->code,
|
|
v4l2_field_names[fmt->field],
|
|
format->width, format->height, format->code,
|
|
v4l2_field_names[format->field]);
|
|
ret = -EPIPE;
|
|
}
|
|
} else {
|
|
const struct v4l2_meta_format *fmt = &node->fmt.fmt.meta;
|
|
|
|
const struct unicam_format_info *fmtinfo;
|
|
|
|
fmtinfo = unicam_find_format_by_fourcc(fmt->dataformat,
|
|
UNICAM_SD_PAD_SOURCE_METADATA);
|
|
if (WARN_ON(!fmtinfo)) {
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
if (fmtinfo->code != format->code ||
|
|
fmt->height != format->height ||
|
|
fmt->width != format->width) {
|
|
dev_dbg(node->dev->dev,
|
|
"meta: (%u x %u) 0x%04x != (%u x %u) 0x%04x\n",
|
|
fmt->width, fmt->height, fmtinfo->code,
|
|
format->width, format->height, format->code);
|
|
ret = -EPIPE;
|
|
}
|
|
}
|
|
|
|
out:
|
|
v4l2_subdev_unlock_state(state);
|
|
return ret;
|
|
}
|
|
|
|
static const struct media_entity_operations unicam_video_media_ops = {
|
|
.link_validate = unicam_video_link_validate,
|
|
};
|
|
|
|
static void unicam_node_release(struct video_device *vdev)
|
|
{
|
|
struct unicam_node *node = video_get_drvdata(vdev);
|
|
|
|
unicam_put(node->dev);
|
|
}
|
|
|
|
static void unicam_set_default_format(struct unicam_node *node)
|
|
{
|
|
if (is_image_node(node)) {
|
|
struct v4l2_pix_format *fmt = &node->fmt.fmt.pix;
|
|
const struct unicam_format_info *fmtinfo =
|
|
&unicam_image_formats[0];
|
|
|
|
node->fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
|
|
|
|
v4l2_fill_pix_format(fmt, &unicam_default_image_format);
|
|
fmt->pixelformat = fmtinfo->fourcc;
|
|
unicam_calc_image_size_bpl(node->dev, fmtinfo, fmt);
|
|
} else {
|
|
struct v4l2_meta_format *fmt = &node->fmt.fmt.meta;
|
|
const struct unicam_format_info *fmtinfo =
|
|
&unicam_meta_formats[0];
|
|
|
|
node->fmt.type = V4L2_BUF_TYPE_META_CAPTURE;
|
|
|
|
fmt->dataformat = fmtinfo->fourcc;
|
|
fmt->width = unicam_default_meta_format.width;
|
|
fmt->height = unicam_default_meta_format.height;
|
|
unicam_calc_meta_size_bpl(node->dev, fmtinfo, fmt);
|
|
}
|
|
}
|
|
|
|
static int unicam_register_node(struct unicam_device *unicam,
|
|
enum unicam_node_type type)
|
|
{
|
|
const u32 pad_index = type == UNICAM_IMAGE_NODE
|
|
? UNICAM_SD_PAD_SOURCE_IMAGE
|
|
: UNICAM_SD_PAD_SOURCE_METADATA;
|
|
struct unicam_node *node = &unicam->node[type];
|
|
struct video_device *vdev = &node->video_dev;
|
|
struct vb2_queue *q = &node->buffer_queue;
|
|
int ret;
|
|
|
|
node->dev = unicam_get(unicam);
|
|
node->id = type;
|
|
|
|
spin_lock_init(&node->dma_queue_lock);
|
|
|
|
INIT_LIST_HEAD(&node->dma_queue);
|
|
|
|
/* Initialize the videobuf2 queue. */
|
|
q->type = type == UNICAM_IMAGE_NODE ? V4L2_BUF_TYPE_VIDEO_CAPTURE
|
|
: V4L2_BUF_TYPE_META_CAPTURE;
|
|
q->io_modes = VB2_MMAP | VB2_DMABUF;
|
|
q->drv_priv = node;
|
|
q->ops = &unicam_video_qops;
|
|
q->mem_ops = &vb2_dma_contig_memops;
|
|
q->buf_struct_size = sizeof(struct unicam_buffer);
|
|
q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
|
|
q->lock = &unicam->lock;
|
|
q->min_queued_buffers = 1;
|
|
q->dev = unicam->dev;
|
|
|
|
ret = vb2_queue_init(q);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "vb2_queue_init() failed\n");
|
|
goto err_unicam_put;
|
|
}
|
|
|
|
/* Initialize the video device. */
|
|
vdev->release = unicam_node_release;
|
|
vdev->fops = &unicam_fops;
|
|
vdev->ioctl_ops = &unicam_ioctl_ops;
|
|
vdev->v4l2_dev = &unicam->v4l2_dev;
|
|
vdev->vfl_dir = VFL_DIR_RX;
|
|
vdev->queue = q;
|
|
vdev->lock = &unicam->lock;
|
|
vdev->device_caps = type == UNICAM_IMAGE_NODE
|
|
? V4L2_CAP_VIDEO_CAPTURE : V4L2_CAP_META_CAPTURE;
|
|
vdev->device_caps |= V4L2_CAP_STREAMING | V4L2_CAP_IO_MC;
|
|
vdev->entity.ops = &unicam_video_media_ops;
|
|
|
|
snprintf(vdev->name, sizeof(vdev->name), "%s-%s", UNICAM_MODULE_NAME,
|
|
type == UNICAM_IMAGE_NODE ? "image" : "embedded");
|
|
|
|
video_set_drvdata(vdev, node);
|
|
|
|
if (type == UNICAM_IMAGE_NODE)
|
|
vdev->entity.flags |= MEDIA_ENT_FL_DEFAULT;
|
|
|
|
node->pad.flags = MEDIA_PAD_FL_SINK;
|
|
|
|
ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
|
|
if (ret)
|
|
goto err_unicam_put;
|
|
|
|
node->dummy_buf.size = UNICAM_DUMMY_BUF_SIZE;
|
|
node->dummy_buf_cpu_addr = dma_alloc_coherent(unicam->dev,
|
|
node->dummy_buf.size,
|
|
&node->dummy_buf.dma_addr,
|
|
GFP_KERNEL);
|
|
if (!node->dummy_buf_cpu_addr) {
|
|
dev_err(unicam->dev, "Unable to allocate dummy buffer.\n");
|
|
ret = -ENOMEM;
|
|
goto err_entity_cleanup;
|
|
}
|
|
|
|
unicam_set_default_format(node);
|
|
|
|
ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Unable to register video device %s\n",
|
|
vdev->name);
|
|
goto err_dma_free;
|
|
}
|
|
|
|
node->registered = true;
|
|
|
|
ret = media_create_pad_link(&unicam->subdev.sd.entity,
|
|
pad_index,
|
|
&node->video_dev.entity,
|
|
0,
|
|
MEDIA_LNK_FL_ENABLED |
|
|
MEDIA_LNK_FL_IMMUTABLE);
|
|
if (ret) {
|
|
/*
|
|
* No need for cleanup, the caller will unregister the
|
|
* video device, which will drop the reference on the
|
|
* device and trigger the cleanup.
|
|
*/
|
|
dev_err(unicam->dev, "Unable to create pad link for %s\n",
|
|
unicam->sensor.subdev->name);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_dma_free:
|
|
dma_free_coherent(unicam->dev, node->dummy_buf.size,
|
|
node->dummy_buf_cpu_addr,
|
|
node->dummy_buf.dma_addr);
|
|
err_entity_cleanup:
|
|
media_entity_cleanup(&vdev->entity);
|
|
err_unicam_put:
|
|
unicam_put(unicam);
|
|
return ret;
|
|
}
|
|
|
|
static void unicam_unregister_nodes(struct unicam_device *unicam)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(unicam->node); i++) {
|
|
struct unicam_node *node = &unicam->node[i];
|
|
|
|
if (node->registered) {
|
|
vb2_video_unregister_device(&node->video_dev);
|
|
node->registered = false;
|
|
}
|
|
|
|
if (node->dummy_buf_cpu_addr)
|
|
dma_free_coherent(unicam->dev, node->dummy_buf.size,
|
|
node->dummy_buf_cpu_addr,
|
|
node->dummy_buf.dma_addr);
|
|
}
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Power management
|
|
*/
|
|
|
|
static int unicam_runtime_resume(struct device *dev)
|
|
{
|
|
struct unicam_device *unicam = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = clk_set_min_rate(unicam->vpu_clock, UNICAM_MIN_VPU_CLOCK_RATE);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "failed to set up VPU clock\n");
|
|
return ret;
|
|
}
|
|
|
|
ret = clk_prepare_enable(unicam->vpu_clock);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Failed to enable VPU clock: %d\n", ret);
|
|
goto err_vpu_clock;
|
|
}
|
|
|
|
ret = clk_set_rate(unicam->clock, 100 * 1000 * 1000);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "failed to set up CSI clock\n");
|
|
goto err_vpu_prepare;
|
|
}
|
|
|
|
ret = clk_prepare_enable(unicam->clock);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Failed to enable CSI clock: %d\n", ret);
|
|
goto err_vpu_prepare;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_vpu_prepare:
|
|
clk_disable_unprepare(unicam->vpu_clock);
|
|
err_vpu_clock:
|
|
if (clk_set_min_rate(unicam->vpu_clock, 0))
|
|
dev_err(unicam->dev, "failed to reset the VPU clock\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int unicam_runtime_suspend(struct device *dev)
|
|
{
|
|
struct unicam_device *unicam = dev_get_drvdata(dev);
|
|
|
|
clk_disable_unprepare(unicam->clock);
|
|
|
|
if (clk_set_min_rate(unicam->vpu_clock, 0))
|
|
dev_err(unicam->dev, "failed to reset the VPU clock\n");
|
|
|
|
clk_disable_unprepare(unicam->vpu_clock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct dev_pm_ops unicam_pm_ops = {
|
|
RUNTIME_PM_OPS(unicam_runtime_suspend, unicam_runtime_resume, NULL)
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* V4L2 async notifier
|
|
*/
|
|
|
|
static int unicam_async_bound(struct v4l2_async_notifier *notifier,
|
|
struct v4l2_subdev *subdev,
|
|
struct v4l2_async_connection *asc)
|
|
{
|
|
struct unicam_device *unicam = notifier_to_unicam_device(notifier);
|
|
struct media_pad *sink = &unicam->subdev.pads[UNICAM_SD_PAD_SINK];
|
|
struct media_pad *source;
|
|
int ret;
|
|
|
|
dev_dbg(unicam->dev, "Using sensor %s for capture\n",
|
|
subdev->name);
|
|
|
|
ret = v4l2_create_fwnode_links_to_pad(subdev, sink, MEDIA_LNK_FL_ENABLED |
|
|
MEDIA_LNK_FL_IMMUTABLE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
source = media_pad_remote_pad_unique(sink);
|
|
if (IS_ERR(source)) {
|
|
dev_err(unicam->dev, "No connected sensor pad\n");
|
|
return PTR_ERR(source);
|
|
}
|
|
|
|
unicam->sensor.subdev = subdev;
|
|
unicam->sensor.pad = source;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int unicam_async_complete(struct v4l2_async_notifier *notifier)
|
|
{
|
|
struct unicam_device *unicam = notifier_to_unicam_device(notifier);
|
|
int ret;
|
|
|
|
ret = unicam_register_node(unicam, UNICAM_IMAGE_NODE);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Unable to register image video device.\n");
|
|
goto unregister;
|
|
}
|
|
|
|
ret = unicam_register_node(unicam, UNICAM_METADATA_NODE);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Unable to register metadata video device.\n");
|
|
goto unregister;
|
|
}
|
|
|
|
ret = v4l2_device_register_subdev_nodes(&unicam->v4l2_dev);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Unable to register subdev nodes.\n");
|
|
goto unregister;
|
|
}
|
|
|
|
return 0;
|
|
|
|
unregister:
|
|
unicam_unregister_nodes(unicam);
|
|
unicam_put(unicam);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct v4l2_async_notifier_operations unicam_async_ops = {
|
|
.bound = unicam_async_bound,
|
|
.complete = unicam_async_complete,
|
|
};
|
|
|
|
static int unicam_async_nf_init(struct unicam_device *unicam)
|
|
{
|
|
struct v4l2_fwnode_endpoint ep = { };
|
|
struct fwnode_handle *ep_handle;
|
|
struct v4l2_async_connection *asc;
|
|
int ret;
|
|
|
|
ret = of_property_read_u32(unicam->dev->of_node, "brcm,num-data-lanes",
|
|
&unicam->max_data_lanes);
|
|
if (ret < 0) {
|
|
dev_err(unicam->dev, "Missing %s DT property\n",
|
|
"brcm,num-data-lanes");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Get and parse the local endpoint. */
|
|
ep_handle = fwnode_graph_get_endpoint_by_id(dev_fwnode(unicam->dev), 0, 0,
|
|
FWNODE_GRAPH_ENDPOINT_NEXT);
|
|
if (!ep_handle) {
|
|
dev_err(unicam->dev, "No endpoint found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
ret = v4l2_fwnode_endpoint_parse(ep_handle, &ep);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Failed to parse endpoint: %d\n", ret);
|
|
goto error;
|
|
}
|
|
|
|
unicam->bus_type = ep.bus_type;
|
|
|
|
switch (ep.bus_type) {
|
|
case V4L2_MBUS_CSI2_DPHY: {
|
|
unsigned int num_data_lanes = ep.bus.mipi_csi2.num_data_lanes;
|
|
|
|
if (num_data_lanes != 1 && num_data_lanes != 2 &&
|
|
num_data_lanes != 4) {
|
|
dev_err(unicam->dev, "%u data lanes not supported\n",
|
|
num_data_lanes);
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
if (num_data_lanes > unicam->max_data_lanes) {
|
|
dev_err(unicam->dev,
|
|
"Endpoint uses %u data lanes when %u are supported\n",
|
|
num_data_lanes, unicam->max_data_lanes);
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
unicam->max_data_lanes = num_data_lanes;
|
|
unicam->bus_flags = ep.bus.mipi_csi2.flags;
|
|
break;
|
|
}
|
|
|
|
case V4L2_MBUS_CCP2:
|
|
unicam->max_data_lanes = 1;
|
|
unicam->bus_flags = ep.bus.mipi_csi1.strobe;
|
|
break;
|
|
|
|
default:
|
|
/* Unsupported bus type */
|
|
dev_err(unicam->dev, "Unsupported bus type %u\n", ep.bus_type);
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
/* Initialize and register the async notifier. */
|
|
v4l2_async_nf_init(&unicam->notifier, &unicam->v4l2_dev);
|
|
|
|
asc = v4l2_async_nf_add_fwnode_remote(&unicam->notifier, ep_handle,
|
|
struct v4l2_async_connection);
|
|
fwnode_handle_put(ep_handle);
|
|
ep_handle = NULL;
|
|
|
|
if (IS_ERR(asc)) {
|
|
ret = PTR_ERR(asc);
|
|
dev_err(unicam->dev, "Failed to add entry to notifier: %d\n",
|
|
ret);
|
|
goto error;
|
|
}
|
|
|
|
unicam->notifier.ops = &unicam_async_ops;
|
|
|
|
ret = v4l2_async_nf_register(&unicam->notifier);
|
|
if (ret) {
|
|
dev_err(unicam->dev, "Error registering device notifier: %d\n",
|
|
ret);
|
|
goto error;
|
|
}
|
|
|
|
return 0;
|
|
|
|
error:
|
|
fwnode_handle_put(ep_handle);
|
|
return ret;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Probe & remove
|
|
*/
|
|
|
|
static int unicam_media_init(struct unicam_device *unicam)
|
|
{
|
|
int ret;
|
|
|
|
unicam->mdev.dev = unicam->dev;
|
|
strscpy(unicam->mdev.model, UNICAM_MODULE_NAME,
|
|
sizeof(unicam->mdev.model));
|
|
unicam->mdev.hw_revision = 0;
|
|
|
|
media_device_init(&unicam->mdev);
|
|
|
|
unicam->v4l2_dev.mdev = &unicam->mdev;
|
|
|
|
ret = v4l2_device_register(unicam->dev, &unicam->v4l2_dev);
|
|
if (ret < 0) {
|
|
dev_err(unicam->dev, "Unable to register v4l2 device\n");
|
|
goto err_media_cleanup;
|
|
}
|
|
|
|
ret = media_device_register(&unicam->mdev);
|
|
if (ret < 0) {
|
|
dev_err(unicam->dev,
|
|
"Unable to register media-controller device\n");
|
|
goto err_v4l2_unregister;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_v4l2_unregister:
|
|
v4l2_device_unregister(&unicam->v4l2_dev);
|
|
err_media_cleanup:
|
|
media_device_cleanup(&unicam->mdev);
|
|
return ret;
|
|
}
|
|
|
|
static int unicam_probe(struct platform_device *pdev)
|
|
{
|
|
struct unicam_device *unicam;
|
|
int ret;
|
|
|
|
unicam = kzalloc(sizeof(*unicam), GFP_KERNEL);
|
|
if (!unicam)
|
|
return -ENOMEM;
|
|
|
|
kref_init(&unicam->kref);
|
|
mutex_init(&unicam->lock);
|
|
|
|
unicam->dev = &pdev->dev;
|
|
platform_set_drvdata(pdev, unicam);
|
|
|
|
unicam->base = devm_platform_ioremap_resource_byname(pdev, "unicam");
|
|
if (IS_ERR(unicam->base)) {
|
|
ret = PTR_ERR(unicam->base);
|
|
goto err_unicam_put;
|
|
}
|
|
|
|
unicam->clk_gate_base = devm_platform_ioremap_resource_byname(pdev, "cmi");
|
|
if (IS_ERR(unicam->clk_gate_base)) {
|
|
ret = PTR_ERR(unicam->clk_gate_base);
|
|
goto err_unicam_put;
|
|
}
|
|
|
|
unicam->clock = devm_clk_get(&pdev->dev, "lp");
|
|
if (IS_ERR(unicam->clock)) {
|
|
dev_err(unicam->dev, "Failed to get lp clock\n");
|
|
ret = PTR_ERR(unicam->clock);
|
|
goto err_unicam_put;
|
|
}
|
|
|
|
unicam->vpu_clock = devm_clk_get(&pdev->dev, "vpu");
|
|
if (IS_ERR(unicam->vpu_clock)) {
|
|
dev_err(unicam->dev, "Failed to get vpu clock\n");
|
|
ret = PTR_ERR(unicam->vpu_clock);
|
|
goto err_unicam_put;
|
|
}
|
|
|
|
ret = platform_get_irq(pdev, 0);
|
|
if (ret < 0)
|
|
goto err_unicam_put;
|
|
|
|
ret = devm_request_irq(&pdev->dev, ret, unicam_isr, 0,
|
|
"unicam_capture0", unicam);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "Unable to request interrupt\n");
|
|
goto err_unicam_put;
|
|
}
|
|
|
|
/* Enable the block power domain. */
|
|
pm_runtime_enable(&pdev->dev);
|
|
|
|
ret = unicam_media_init(unicam);
|
|
if (ret)
|
|
goto err_pm_runtime;
|
|
|
|
ret = unicam_subdev_init(unicam);
|
|
if (ret)
|
|
goto err_media_unregister;
|
|
|
|
ret = unicam_async_nf_init(unicam);
|
|
if (ret)
|
|
goto err_subdev_unregister;
|
|
|
|
return 0;
|
|
|
|
err_subdev_unregister:
|
|
unicam_subdev_cleanup(unicam);
|
|
err_media_unregister:
|
|
media_device_unregister(&unicam->mdev);
|
|
err_pm_runtime:
|
|
pm_runtime_disable(&pdev->dev);
|
|
err_unicam_put:
|
|
unicam_put(unicam);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void unicam_remove(struct platform_device *pdev)
|
|
{
|
|
struct unicam_device *unicam = platform_get_drvdata(pdev);
|
|
|
|
unicam_unregister_nodes(unicam);
|
|
v4l2_device_unregister(&unicam->v4l2_dev);
|
|
media_device_unregister(&unicam->mdev);
|
|
v4l2_async_nf_unregister(&unicam->notifier);
|
|
|
|
unicam_subdev_cleanup(unicam);
|
|
|
|
unicam_put(unicam);
|
|
|
|
pm_runtime_disable(&pdev->dev);
|
|
}
|
|
|
|
static const struct of_device_id unicam_of_match[] = {
|
|
{ .compatible = "brcm,bcm2835-unicam", },
|
|
{ /* sentinel */ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, unicam_of_match);
|
|
|
|
static struct platform_driver unicam_driver = {
|
|
.probe = unicam_probe,
|
|
.remove = unicam_remove,
|
|
.driver = {
|
|
.name = UNICAM_MODULE_NAME,
|
|
.pm = pm_ptr(&unicam_pm_ops),
|
|
.of_match_table = unicam_of_match,
|
|
},
|
|
};
|
|
|
|
module_platform_driver(unicam_driver);
|
|
|
|
MODULE_AUTHOR("Dave Stevenson <dave.stevenson@raspberrypi.com>");
|
|
MODULE_DESCRIPTION("BCM2835 Unicam driver");
|
|
MODULE_LICENSE("GPL");
|