891 lines
25 KiB
C
891 lines
25 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved
|
||
|
*/
|
||
|
|
||
|
#include <linux/sizes.h>
|
||
|
#include <linux/vfio_pci_core.h>
|
||
|
|
||
|
/*
|
||
|
* The device memory usable to the workloads running in the VM is cached
|
||
|
* and showcased as a 64b device BAR (comprising of BAR4 and BAR5 region)
|
||
|
* to the VM and is represented as usemem.
|
||
|
* Moreover, the VM GPU device driver needs a non-cacheable region to
|
||
|
* support the MIG feature. This region is also exposed as a 64b BAR
|
||
|
* (comprising of BAR2 and BAR3 region) and represented as resmem.
|
||
|
*/
|
||
|
#define RESMEM_REGION_INDEX VFIO_PCI_BAR2_REGION_INDEX
|
||
|
#define USEMEM_REGION_INDEX VFIO_PCI_BAR4_REGION_INDEX
|
||
|
|
||
|
/* Memory size expected as non cached and reserved by the VM driver */
|
||
|
#define RESMEM_SIZE SZ_1G
|
||
|
|
||
|
/* A hardwired and constant ABI value between the GPU FW and VFIO driver. */
|
||
|
#define MEMBLK_SIZE SZ_512M
|
||
|
|
||
|
/*
|
||
|
* The state of the two device memory region - resmem and usemem - is
|
||
|
* saved as struct mem_region.
|
||
|
*/
|
||
|
struct mem_region {
|
||
|
phys_addr_t memphys; /* Base physical address of the region */
|
||
|
size_t memlength; /* Region size */
|
||
|
size_t bar_size; /* Reported region BAR size */
|
||
|
__le64 bar_val; /* Emulated BAR offset registers */
|
||
|
union {
|
||
|
void *memaddr;
|
||
|
void __iomem *ioaddr;
|
||
|
}; /* Base virtual address of the region */
|
||
|
};
|
||
|
|
||
|
struct nvgrace_gpu_pci_core_device {
|
||
|
struct vfio_pci_core_device core_device;
|
||
|
/* Cached and usable memory for the VM. */
|
||
|
struct mem_region usemem;
|
||
|
/* Non cached memory carved out from the end of device memory */
|
||
|
struct mem_region resmem;
|
||
|
/* Lock to control device memory kernel mapping */
|
||
|
struct mutex remap_lock;
|
||
|
};
|
||
|
|
||
|
static void nvgrace_gpu_init_fake_bar_emu_regs(struct vfio_device *core_vdev)
|
||
|
{
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
|
||
|
nvdev->resmem.bar_val = 0;
|
||
|
nvdev->usemem.bar_val = 0;
|
||
|
}
|
||
|
|
||
|
/* Choose the structure corresponding to the fake BAR with a given index. */
|
||
|
static struct mem_region *
|
||
|
nvgrace_gpu_memregion(int index,
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev)
|
||
|
{
|
||
|
if (index == USEMEM_REGION_INDEX)
|
||
|
return &nvdev->usemem;
|
||
|
|
||
|
if (index == RESMEM_REGION_INDEX)
|
||
|
return &nvdev->resmem;
|
||
|
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int nvgrace_gpu_open_device(struct vfio_device *core_vdev)
|
||
|
{
|
||
|
struct vfio_pci_core_device *vdev =
|
||
|
container_of(core_vdev, struct vfio_pci_core_device, vdev);
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
int ret;
|
||
|
|
||
|
ret = vfio_pci_core_enable(vdev);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (nvdev->usemem.memlength) {
|
||
|
nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
|
||
|
mutex_init(&nvdev->remap_lock);
|
||
|
}
|
||
|
|
||
|
vfio_pci_core_finish_enable(vdev);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void nvgrace_gpu_close_device(struct vfio_device *core_vdev)
|
||
|
{
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
|
||
|
/* Unmap the mapping to the device memory cached region */
|
||
|
if (nvdev->usemem.memaddr) {
|
||
|
memunmap(nvdev->usemem.memaddr);
|
||
|
nvdev->usemem.memaddr = NULL;
|
||
|
}
|
||
|
|
||
|
/* Unmap the mapping to the device memory non-cached region */
|
||
|
if (nvdev->resmem.ioaddr) {
|
||
|
iounmap(nvdev->resmem.ioaddr);
|
||
|
nvdev->resmem.ioaddr = NULL;
|
||
|
}
|
||
|
|
||
|
mutex_destroy(&nvdev->remap_lock);
|
||
|
|
||
|
vfio_pci_core_close_device(core_vdev);
|
||
|
}
|
||
|
|
||
|
static int nvgrace_gpu_mmap(struct vfio_device *core_vdev,
|
||
|
struct vm_area_struct *vma)
|
||
|
{
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
struct mem_region *memregion;
|
||
|
unsigned long start_pfn;
|
||
|
u64 req_len, pgoff, end;
|
||
|
unsigned int index;
|
||
|
int ret = 0;
|
||
|
|
||
|
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
|
||
|
|
||
|
memregion = nvgrace_gpu_memregion(index, nvdev);
|
||
|
if (!memregion)
|
||
|
return vfio_pci_core_mmap(core_vdev, vma);
|
||
|
|
||
|
/*
|
||
|
* Request to mmap the BAR. Map to the CPU accessible memory on the
|
||
|
* GPU using the memory information gathered from the system ACPI
|
||
|
* tables.
|
||
|
*/
|
||
|
pgoff = vma->vm_pgoff &
|
||
|
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
|
||
|
|
||
|
if (check_sub_overflow(vma->vm_end, vma->vm_start, &req_len) ||
|
||
|
check_add_overflow(PHYS_PFN(memregion->memphys), pgoff, &start_pfn) ||
|
||
|
check_add_overflow(PFN_PHYS(pgoff), req_len, &end))
|
||
|
return -EOVERFLOW;
|
||
|
|
||
|
/*
|
||
|
* Check that the mapping request does not go beyond available device
|
||
|
* memory size
|
||
|
*/
|
||
|
if (end > memregion->memlength)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* The carved out region of the device memory needs the NORMAL_NC
|
||
|
* property. Communicate as such to the hypervisor.
|
||
|
*/
|
||
|
if (index == RESMEM_REGION_INDEX) {
|
||
|
/*
|
||
|
* The nvgrace-gpu module has no issues with uncontained
|
||
|
* failures on NORMAL_NC accesses. VM_ALLOW_ANY_UNCACHED is
|
||
|
* set to communicate to the KVM to S2 map as NORMAL_NC.
|
||
|
* This opens up guest usage of NORMAL_NC for this mapping.
|
||
|
*/
|
||
|
vm_flags_set(vma, VM_ALLOW_ANY_UNCACHED);
|
||
|
|
||
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Perform a PFN map to the memory and back the device BAR by the
|
||
|
* GPU memory.
|
||
|
*
|
||
|
* The available GPU memory size may not be power-of-2 aligned. The
|
||
|
* remainder is only backed by vfio_device_ops read/write handlers.
|
||
|
*
|
||
|
* During device reset, the GPU is safely disconnected to the CPU
|
||
|
* and access to the BAR will be immediately returned preventing
|
||
|
* machine check.
|
||
|
*/
|
||
|
ret = remap_pfn_range(vma, vma->vm_start, start_pfn,
|
||
|
req_len, vma->vm_page_prot);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
vma->vm_pgoff = start_pfn;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static long
|
||
|
nvgrace_gpu_ioctl_get_region_info(struct vfio_device *core_vdev,
|
||
|
unsigned long arg)
|
||
|
{
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
unsigned long minsz = offsetofend(struct vfio_region_info, offset);
|
||
|
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
|
||
|
struct vfio_region_info_cap_sparse_mmap *sparse;
|
||
|
struct vfio_region_info info;
|
||
|
struct mem_region *memregion;
|
||
|
u32 size;
|
||
|
int ret;
|
||
|
|
||
|
if (copy_from_user(&info, (void __user *)arg, minsz))
|
||
|
return -EFAULT;
|
||
|
|
||
|
if (info.argsz < minsz)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/*
|
||
|
* Request to determine the BAR region information. Send the
|
||
|
* GPU memory information.
|
||
|
*/
|
||
|
memregion = nvgrace_gpu_memregion(info.index, nvdev);
|
||
|
if (!memregion)
|
||
|
return vfio_pci_core_ioctl(core_vdev,
|
||
|
VFIO_DEVICE_GET_REGION_INFO, arg);
|
||
|
|
||
|
size = struct_size(sparse, areas, 1);
|
||
|
|
||
|
/*
|
||
|
* Setup for sparse mapping for the device memory. Only the
|
||
|
* available device memory on the hardware is shown as a
|
||
|
* mappable region.
|
||
|
*/
|
||
|
sparse = kzalloc(size, GFP_KERNEL);
|
||
|
if (!sparse)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
sparse->nr_areas = 1;
|
||
|
sparse->areas[0].offset = 0;
|
||
|
sparse->areas[0].size = memregion->memlength;
|
||
|
sparse->header.id = VFIO_REGION_INFO_CAP_SPARSE_MMAP;
|
||
|
sparse->header.version = 1;
|
||
|
|
||
|
ret = vfio_info_add_capability(&caps, &sparse->header, size);
|
||
|
kfree(sparse);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
|
||
|
/*
|
||
|
* The region memory size may not be power-of-2 aligned.
|
||
|
* Given that the memory as a BAR and may not be
|
||
|
* aligned, roundup to the next power-of-2.
|
||
|
*/
|
||
|
info.size = memregion->bar_size;
|
||
|
info.flags = VFIO_REGION_INFO_FLAG_READ |
|
||
|
VFIO_REGION_INFO_FLAG_WRITE |
|
||
|
VFIO_REGION_INFO_FLAG_MMAP;
|
||
|
|
||
|
if (caps.size) {
|
||
|
info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
|
||
|
if (info.argsz < sizeof(info) + caps.size) {
|
||
|
info.argsz = sizeof(info) + caps.size;
|
||
|
info.cap_offset = 0;
|
||
|
} else {
|
||
|
vfio_info_cap_shift(&caps, sizeof(info));
|
||
|
if (copy_to_user((void __user *)arg +
|
||
|
sizeof(info), caps.buf,
|
||
|
caps.size)) {
|
||
|
kfree(caps.buf);
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
info.cap_offset = sizeof(info);
|
||
|
}
|
||
|
kfree(caps.buf);
|
||
|
}
|
||
|
return copy_to_user((void __user *)arg, &info, minsz) ?
|
||
|
-EFAULT : 0;
|
||
|
}
|
||
|
|
||
|
static long nvgrace_gpu_ioctl(struct vfio_device *core_vdev,
|
||
|
unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
switch (cmd) {
|
||
|
case VFIO_DEVICE_GET_REGION_INFO:
|
||
|
return nvgrace_gpu_ioctl_get_region_info(core_vdev, arg);
|
||
|
case VFIO_DEVICE_IOEVENTFD:
|
||
|
return -ENOTTY;
|
||
|
case VFIO_DEVICE_RESET:
|
||
|
nvgrace_gpu_init_fake_bar_emu_regs(core_vdev);
|
||
|
fallthrough;
|
||
|
default:
|
||
|
return vfio_pci_core_ioctl(core_vdev, cmd, arg);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static __le64
|
||
|
nvgrace_gpu_get_read_value(size_t bar_size, u64 flags, __le64 val64)
|
||
|
{
|
||
|
u64 tmp_val;
|
||
|
|
||
|
tmp_val = le64_to_cpu(val64);
|
||
|
tmp_val &= ~(bar_size - 1);
|
||
|
tmp_val |= flags;
|
||
|
|
||
|
return cpu_to_le64(tmp_val);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Both the usable (usemem) and the reserved (resmem) device memory region
|
||
|
* are exposed as a 64b fake device BARs in the VM. These fake BARs must
|
||
|
* respond to the accesses on their respective PCI config space offsets.
|
||
|
*
|
||
|
* resmem BAR owns PCI_BASE_ADDRESS_2 & PCI_BASE_ADDRESS_3.
|
||
|
* usemem BAR owns PCI_BASE_ADDRESS_4 & PCI_BASE_ADDRESS_5.
|
||
|
*/
|
||
|
static ssize_t
|
||
|
nvgrace_gpu_read_config_emu(struct vfio_device *core_vdev,
|
||
|
char __user *buf, size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
|
||
|
struct mem_region *memregion = NULL;
|
||
|
__le64 val64;
|
||
|
size_t register_offset;
|
||
|
loff_t copy_offset;
|
||
|
size_t copy_count;
|
||
|
int ret;
|
||
|
|
||
|
ret = vfio_pci_core_read(core_vdev, buf, count, ppos);
|
||
|
if (ret < 0)
|
||
|
return ret;
|
||
|
|
||
|
if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
|
||
|
sizeof(val64),
|
||
|
©_offset, ©_count,
|
||
|
®ister_offset))
|
||
|
memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
|
||
|
else if (vfio_pci_core_range_intersect_range(pos, count,
|
||
|
PCI_BASE_ADDRESS_4,
|
||
|
sizeof(val64),
|
||
|
©_offset, ©_count,
|
||
|
®ister_offset))
|
||
|
memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
|
||
|
|
||
|
if (memregion) {
|
||
|
val64 = nvgrace_gpu_get_read_value(memregion->bar_size,
|
||
|
PCI_BASE_ADDRESS_MEM_TYPE_64 |
|
||
|
PCI_BASE_ADDRESS_MEM_PREFETCH,
|
||
|
memregion->bar_val);
|
||
|
if (copy_to_user(buf + copy_offset,
|
||
|
(void *)&val64 + register_offset, copy_count)) {
|
||
|
/*
|
||
|
* The position has been incremented in
|
||
|
* vfio_pci_core_read. Reset the offset back to the
|
||
|
* starting position.
|
||
|
*/
|
||
|
*ppos -= count;
|
||
|
return -EFAULT;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
nvgrace_gpu_write_config_emu(struct vfio_device *core_vdev,
|
||
|
const char __user *buf, size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
u64 pos = *ppos & VFIO_PCI_OFFSET_MASK;
|
||
|
struct mem_region *memregion = NULL;
|
||
|
size_t register_offset;
|
||
|
loff_t copy_offset;
|
||
|
size_t copy_count;
|
||
|
|
||
|
if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_2,
|
||
|
sizeof(u64), ©_offset,
|
||
|
©_count, ®ister_offset))
|
||
|
memregion = nvgrace_gpu_memregion(RESMEM_REGION_INDEX, nvdev);
|
||
|
else if (vfio_pci_core_range_intersect_range(pos, count, PCI_BASE_ADDRESS_4,
|
||
|
sizeof(u64), ©_offset,
|
||
|
©_count, ®ister_offset))
|
||
|
memregion = nvgrace_gpu_memregion(USEMEM_REGION_INDEX, nvdev);
|
||
|
|
||
|
if (memregion) {
|
||
|
if (copy_from_user((void *)&memregion->bar_val + register_offset,
|
||
|
buf + copy_offset, copy_count))
|
||
|
return -EFAULT;
|
||
|
*ppos += copy_count;
|
||
|
return copy_count;
|
||
|
}
|
||
|
|
||
|
return vfio_pci_core_write(core_vdev, buf, count, ppos);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Ad hoc map the device memory in the module kernel VA space. Primarily needed
|
||
|
* as vfio does not require the userspace driver to only perform accesses through
|
||
|
* mmaps of the vfio-pci BAR regions and such accesses should be supported using
|
||
|
* vfio_device_ops read/write implementations.
|
||
|
*
|
||
|
* The usemem region is cacheable memory and hence is memremaped.
|
||
|
* The resmem region is non-cached and is mapped using ioremap_wc (NORMAL_NC).
|
||
|
*/
|
||
|
static int
|
||
|
nvgrace_gpu_map_device_mem(int index,
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev)
|
||
|
{
|
||
|
struct mem_region *memregion;
|
||
|
int ret = 0;
|
||
|
|
||
|
memregion = nvgrace_gpu_memregion(index, nvdev);
|
||
|
if (!memregion)
|
||
|
return -EINVAL;
|
||
|
|
||
|
mutex_lock(&nvdev->remap_lock);
|
||
|
|
||
|
if (memregion->memaddr)
|
||
|
goto unlock;
|
||
|
|
||
|
if (index == USEMEM_REGION_INDEX)
|
||
|
memregion->memaddr = memremap(memregion->memphys,
|
||
|
memregion->memlength,
|
||
|
MEMREMAP_WB);
|
||
|
else
|
||
|
memregion->ioaddr = ioremap_wc(memregion->memphys,
|
||
|
memregion->memlength);
|
||
|
|
||
|
if (!memregion->memaddr)
|
||
|
ret = -ENOMEM;
|
||
|
|
||
|
unlock:
|
||
|
mutex_unlock(&nvdev->remap_lock);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read the data from the device memory (mapped either through ioremap
|
||
|
* or memremap) into the user buffer.
|
||
|
*/
|
||
|
static int
|
||
|
nvgrace_gpu_map_and_read(struct nvgrace_gpu_pci_core_device *nvdev,
|
||
|
char __user *buf, size_t mem_count, loff_t *ppos)
|
||
|
{
|
||
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
||
|
u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
|
||
|
int ret;
|
||
|
|
||
|
if (!mem_count)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* Handle read on the BAR regions. Map to the target device memory
|
||
|
* physical address and copy to the request read buffer.
|
||
|
*/
|
||
|
ret = nvgrace_gpu_map_device_mem(index, nvdev);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (index == USEMEM_REGION_INDEX) {
|
||
|
if (copy_to_user(buf,
|
||
|
(u8 *)nvdev->usemem.memaddr + offset,
|
||
|
mem_count))
|
||
|
ret = -EFAULT;
|
||
|
} else {
|
||
|
/*
|
||
|
* The hardware ensures that the system does not crash when
|
||
|
* the device memory is accessed with the memory enable
|
||
|
* turned off. It synthesizes ~0 on such read. So there is
|
||
|
* no need to check or support the disablement/enablement of
|
||
|
* BAR through PCI_COMMAND config space register. Pass
|
||
|
* test_mem flag as false.
|
||
|
*/
|
||
|
ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
|
||
|
nvdev->resmem.ioaddr,
|
||
|
buf, offset, mem_count,
|
||
|
0, 0, false);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read count bytes from the device memory at an offset. The actual device
|
||
|
* memory size (available) may not be a power-of-2. So the driver fakes
|
||
|
* the size to a power-of-2 (reported) when exposing to a user space driver.
|
||
|
*
|
||
|
* Reads starting beyond the reported size generate -EINVAL; reads extending
|
||
|
* beyond the actual device size is filled with ~0; reads extending beyond
|
||
|
* the reported size are truncated.
|
||
|
*/
|
||
|
static ssize_t
|
||
|
nvgrace_gpu_read_mem(struct nvgrace_gpu_pci_core_device *nvdev,
|
||
|
char __user *buf, size_t count, loff_t *ppos)
|
||
|
{
|
||
|
u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
|
||
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
||
|
struct mem_region *memregion;
|
||
|
size_t mem_count, i;
|
||
|
u8 val = 0xFF;
|
||
|
int ret;
|
||
|
|
||
|
/* No need to do NULL check as caller does. */
|
||
|
memregion = nvgrace_gpu_memregion(index, nvdev);
|
||
|
|
||
|
if (offset >= memregion->bar_size)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Clip short the read request beyond reported BAR size */
|
||
|
count = min(count, memregion->bar_size - (size_t)offset);
|
||
|
|
||
|
/*
|
||
|
* Determine how many bytes to be actually read from the device memory.
|
||
|
* Read request beyond the actual device memory size is filled with ~0,
|
||
|
* while those beyond the actual reported size is skipped.
|
||
|
*/
|
||
|
if (offset >= memregion->memlength)
|
||
|
mem_count = 0;
|
||
|
else
|
||
|
mem_count = min(count, memregion->memlength - (size_t)offset);
|
||
|
|
||
|
ret = nvgrace_gpu_map_and_read(nvdev, buf, mem_count, ppos);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
/*
|
||
|
* Only the device memory present on the hardware is mapped, which may
|
||
|
* not be power-of-2 aligned. A read to an offset beyond the device memory
|
||
|
* size is filled with ~0.
|
||
|
*/
|
||
|
for (i = mem_count; i < count; i++) {
|
||
|
ret = put_user(val, (unsigned char __user *)(buf + i));
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
*ppos += count;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
nvgrace_gpu_read(struct vfio_device *core_vdev,
|
||
|
char __user *buf, size_t count, loff_t *ppos)
|
||
|
{
|
||
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
|
||
|
if (nvgrace_gpu_memregion(index, nvdev))
|
||
|
return nvgrace_gpu_read_mem(nvdev, buf, count, ppos);
|
||
|
|
||
|
if (index == VFIO_PCI_CONFIG_REGION_INDEX)
|
||
|
return nvgrace_gpu_read_config_emu(core_vdev, buf, count, ppos);
|
||
|
|
||
|
return vfio_pci_core_read(core_vdev, buf, count, ppos);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write the data to the device memory (mapped either through ioremap
|
||
|
* or memremap) from the user buffer.
|
||
|
*/
|
||
|
static int
|
||
|
nvgrace_gpu_map_and_write(struct nvgrace_gpu_pci_core_device *nvdev,
|
||
|
const char __user *buf, size_t mem_count,
|
||
|
loff_t *ppos)
|
||
|
{
|
||
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
||
|
loff_t pos = *ppos & VFIO_PCI_OFFSET_MASK;
|
||
|
int ret;
|
||
|
|
||
|
if (!mem_count)
|
||
|
return 0;
|
||
|
|
||
|
ret = nvgrace_gpu_map_device_mem(index, nvdev);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (index == USEMEM_REGION_INDEX) {
|
||
|
if (copy_from_user((u8 *)nvdev->usemem.memaddr + pos,
|
||
|
buf, mem_count))
|
||
|
return -EFAULT;
|
||
|
} else {
|
||
|
/*
|
||
|
* The hardware ensures that the system does not crash when
|
||
|
* the device memory is accessed with the memory enable
|
||
|
* turned off. It drops such writes. So there is no need to
|
||
|
* check or support the disablement/enablement of BAR
|
||
|
* through PCI_COMMAND config space register. Pass test_mem
|
||
|
* flag as false.
|
||
|
*/
|
||
|
ret = vfio_pci_core_do_io_rw(&nvdev->core_device, false,
|
||
|
nvdev->resmem.ioaddr,
|
||
|
(char __user *)buf, pos, mem_count,
|
||
|
0, 0, true);
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write count bytes to the device memory at a given offset. The actual device
|
||
|
* memory size (available) may not be a power-of-2. So the driver fakes the
|
||
|
* size to a power-of-2 (reported) when exposing to a user space driver.
|
||
|
*
|
||
|
* Writes extending beyond the reported size are truncated; writes starting
|
||
|
* beyond the reported size generate -EINVAL.
|
||
|
*/
|
||
|
static ssize_t
|
||
|
nvgrace_gpu_write_mem(struct nvgrace_gpu_pci_core_device *nvdev,
|
||
|
size_t count, loff_t *ppos, const char __user *buf)
|
||
|
{
|
||
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
||
|
u64 offset = *ppos & VFIO_PCI_OFFSET_MASK;
|
||
|
struct mem_region *memregion;
|
||
|
size_t mem_count;
|
||
|
int ret = 0;
|
||
|
|
||
|
/* No need to do NULL check as caller does. */
|
||
|
memregion = nvgrace_gpu_memregion(index, nvdev);
|
||
|
|
||
|
if (offset >= memregion->bar_size)
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Clip short the write request beyond reported BAR size */
|
||
|
count = min(count, memregion->bar_size - (size_t)offset);
|
||
|
|
||
|
/*
|
||
|
* Determine how many bytes to be actually written to the device memory.
|
||
|
* Do not write to the offset beyond available size.
|
||
|
*/
|
||
|
if (offset >= memregion->memlength)
|
||
|
goto exitfn;
|
||
|
|
||
|
/*
|
||
|
* Only the device memory present on the hardware is mapped, which may
|
||
|
* not be power-of-2 aligned. Drop access outside the available device
|
||
|
* memory on the hardware.
|
||
|
*/
|
||
|
mem_count = min(count, memregion->memlength - (size_t)offset);
|
||
|
|
||
|
ret = nvgrace_gpu_map_and_write(nvdev, buf, mem_count, ppos);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
exitfn:
|
||
|
*ppos += count;
|
||
|
return count;
|
||
|
}
|
||
|
|
||
|
static ssize_t
|
||
|
nvgrace_gpu_write(struct vfio_device *core_vdev,
|
||
|
const char __user *buf, size_t count, loff_t *ppos)
|
||
|
{
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev =
|
||
|
container_of(core_vdev, struct nvgrace_gpu_pci_core_device,
|
||
|
core_device.vdev);
|
||
|
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
|
||
|
|
||
|
if (nvgrace_gpu_memregion(index, nvdev))
|
||
|
return nvgrace_gpu_write_mem(nvdev, count, ppos, buf);
|
||
|
|
||
|
if (index == VFIO_PCI_CONFIG_REGION_INDEX)
|
||
|
return nvgrace_gpu_write_config_emu(core_vdev, buf, count, ppos);
|
||
|
|
||
|
return vfio_pci_core_write(core_vdev, buf, count, ppos);
|
||
|
}
|
||
|
|
||
|
static const struct vfio_device_ops nvgrace_gpu_pci_ops = {
|
||
|
.name = "nvgrace-gpu-vfio-pci",
|
||
|
.init = vfio_pci_core_init_dev,
|
||
|
.release = vfio_pci_core_release_dev,
|
||
|
.open_device = nvgrace_gpu_open_device,
|
||
|
.close_device = nvgrace_gpu_close_device,
|
||
|
.ioctl = nvgrace_gpu_ioctl,
|
||
|
.device_feature = vfio_pci_core_ioctl_feature,
|
||
|
.read = nvgrace_gpu_read,
|
||
|
.write = nvgrace_gpu_write,
|
||
|
.mmap = nvgrace_gpu_mmap,
|
||
|
.request = vfio_pci_core_request,
|
||
|
.match = vfio_pci_core_match,
|
||
|
.bind_iommufd = vfio_iommufd_physical_bind,
|
||
|
.unbind_iommufd = vfio_iommufd_physical_unbind,
|
||
|
.attach_ioas = vfio_iommufd_physical_attach_ioas,
|
||
|
.detach_ioas = vfio_iommufd_physical_detach_ioas,
|
||
|
};
|
||
|
|
||
|
static const struct vfio_device_ops nvgrace_gpu_pci_core_ops = {
|
||
|
.name = "nvgrace-gpu-vfio-pci-core",
|
||
|
.init = vfio_pci_core_init_dev,
|
||
|
.release = vfio_pci_core_release_dev,
|
||
|
.open_device = nvgrace_gpu_open_device,
|
||
|
.close_device = vfio_pci_core_close_device,
|
||
|
.ioctl = vfio_pci_core_ioctl,
|
||
|
.device_feature = vfio_pci_core_ioctl_feature,
|
||
|
.read = vfio_pci_core_read,
|
||
|
.write = vfio_pci_core_write,
|
||
|
.mmap = vfio_pci_core_mmap,
|
||
|
.request = vfio_pci_core_request,
|
||
|
.match = vfio_pci_core_match,
|
||
|
.bind_iommufd = vfio_iommufd_physical_bind,
|
||
|
.unbind_iommufd = vfio_iommufd_physical_unbind,
|
||
|
.attach_ioas = vfio_iommufd_physical_attach_ioas,
|
||
|
.detach_ioas = vfio_iommufd_physical_detach_ioas,
|
||
|
};
|
||
|
|
||
|
static int
|
||
|
nvgrace_gpu_fetch_memory_property(struct pci_dev *pdev,
|
||
|
u64 *pmemphys, u64 *pmemlength)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* The memory information is present in the system ACPI tables as DSD
|
||
|
* properties nvidia,gpu-mem-base-pa and nvidia,gpu-mem-size.
|
||
|
*/
|
||
|
ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-base-pa",
|
||
|
pmemphys);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (*pmemphys > type_max(phys_addr_t))
|
||
|
return -EOVERFLOW;
|
||
|
|
||
|
ret = device_property_read_u64(&pdev->dev, "nvidia,gpu-mem-size",
|
||
|
pmemlength);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (*pmemlength > type_max(size_t))
|
||
|
return -EOVERFLOW;
|
||
|
|
||
|
/*
|
||
|
* If the C2C link is not up due to an error, the coherent device
|
||
|
* memory size is returned as 0. Fail in such case.
|
||
|
*/
|
||
|
if (*pmemlength == 0)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
nvgrace_gpu_init_nvdev_struct(struct pci_dev *pdev,
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev,
|
||
|
u64 memphys, u64 memlength)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
|
||
|
/*
|
||
|
* The VM GPU device driver needs a non-cacheable region to support
|
||
|
* the MIG feature. Since the device memory is mapped as NORMAL cached,
|
||
|
* carve out a region from the end with a different NORMAL_NC
|
||
|
* property (called as reserved memory and represented as resmem). This
|
||
|
* region then is exposed as a 64b BAR (region 2 and 3) to the VM, while
|
||
|
* exposing the rest (termed as usable memory and represented using usemem)
|
||
|
* as cacheable 64b BAR (region 4 and 5).
|
||
|
*
|
||
|
* devmem (memlength)
|
||
|
* |-------------------------------------------------|
|
||
|
* | |
|
||
|
* usemem.memphys resmem.memphys
|
||
|
*/
|
||
|
nvdev->usemem.memphys = memphys;
|
||
|
|
||
|
/*
|
||
|
* The device memory exposed to the VM is added to the kernel by the
|
||
|
* VM driver module in chunks of memory block size. Only the usable
|
||
|
* memory (usemem) is added to the kernel for usage by the VM
|
||
|
* workloads. Make the usable memory size memblock aligned.
|
||
|
*/
|
||
|
if (check_sub_overflow(memlength, RESMEM_SIZE,
|
||
|
&nvdev->usemem.memlength)) {
|
||
|
ret = -EOVERFLOW;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The USEMEM part of the device memory has to be MEMBLK_SIZE
|
||
|
* aligned. This is a hardwired ABI value between the GPU FW and
|
||
|
* VFIO driver. The VM device driver is also aware of it and make
|
||
|
* use of the value for its calculation to determine USEMEM size.
|
||
|
*/
|
||
|
nvdev->usemem.memlength = round_down(nvdev->usemem.memlength,
|
||
|
MEMBLK_SIZE);
|
||
|
if (nvdev->usemem.memlength == 0) {
|
||
|
ret = -EINVAL;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
if ((check_add_overflow(nvdev->usemem.memphys,
|
||
|
nvdev->usemem.memlength,
|
||
|
&nvdev->resmem.memphys)) ||
|
||
|
(check_sub_overflow(memlength, nvdev->usemem.memlength,
|
||
|
&nvdev->resmem.memlength))) {
|
||
|
ret = -EOVERFLOW;
|
||
|
goto done;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The memory regions are exposed as BARs. Calculate and save
|
||
|
* the BAR size for them.
|
||
|
*/
|
||
|
nvdev->usemem.bar_size = roundup_pow_of_two(nvdev->usemem.memlength);
|
||
|
nvdev->resmem.bar_size = roundup_pow_of_two(nvdev->resmem.memlength);
|
||
|
done:
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int nvgrace_gpu_probe(struct pci_dev *pdev,
|
||
|
const struct pci_device_id *id)
|
||
|
{
|
||
|
const struct vfio_device_ops *ops = &nvgrace_gpu_pci_core_ops;
|
||
|
struct nvgrace_gpu_pci_core_device *nvdev;
|
||
|
u64 memphys, memlength;
|
||
|
int ret;
|
||
|
|
||
|
ret = nvgrace_gpu_fetch_memory_property(pdev, &memphys, &memlength);
|
||
|
if (!ret)
|
||
|
ops = &nvgrace_gpu_pci_ops;
|
||
|
|
||
|
nvdev = vfio_alloc_device(nvgrace_gpu_pci_core_device, core_device.vdev,
|
||
|
&pdev->dev, ops);
|
||
|
if (IS_ERR(nvdev))
|
||
|
return PTR_ERR(nvdev);
|
||
|
|
||
|
dev_set_drvdata(&pdev->dev, &nvdev->core_device);
|
||
|
|
||
|
if (ops == &nvgrace_gpu_pci_ops) {
|
||
|
/*
|
||
|
* Device memory properties are identified in the host ACPI
|
||
|
* table. Set the nvgrace_gpu_pci_core_device structure.
|
||
|
*/
|
||
|
ret = nvgrace_gpu_init_nvdev_struct(pdev, nvdev,
|
||
|
memphys, memlength);
|
||
|
if (ret)
|
||
|
goto out_put_vdev;
|
||
|
}
|
||
|
|
||
|
ret = vfio_pci_core_register_device(&nvdev->core_device);
|
||
|
if (ret)
|
||
|
goto out_put_vdev;
|
||
|
|
||
|
return ret;
|
||
|
|
||
|
out_put_vdev:
|
||
|
vfio_put_device(&nvdev->core_device.vdev);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static void nvgrace_gpu_remove(struct pci_dev *pdev)
|
||
|
{
|
||
|
struct vfio_pci_core_device *core_device = dev_get_drvdata(&pdev->dev);
|
||
|
|
||
|
vfio_pci_core_unregister_device(core_device);
|
||
|
vfio_put_device(&core_device->vdev);
|
||
|
}
|
||
|
|
||
|
static const struct pci_device_id nvgrace_gpu_vfio_pci_table[] = {
|
||
|
/* GH200 120GB */
|
||
|
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2342) },
|
||
|
/* GH200 480GB */
|
||
|
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2345) },
|
||
|
/* GH200 SKU */
|
||
|
{ PCI_DRIVER_OVERRIDE_DEVICE_VFIO(PCI_VENDOR_ID_NVIDIA, 0x2348) },
|
||
|
{}
|
||
|
};
|
||
|
|
||
|
MODULE_DEVICE_TABLE(pci, nvgrace_gpu_vfio_pci_table);
|
||
|
|
||
|
static struct pci_driver nvgrace_gpu_vfio_pci_driver = {
|
||
|
.name = KBUILD_MODNAME,
|
||
|
.id_table = nvgrace_gpu_vfio_pci_table,
|
||
|
.probe = nvgrace_gpu_probe,
|
||
|
.remove = nvgrace_gpu_remove,
|
||
|
.err_handler = &vfio_pci_core_err_handlers,
|
||
|
.driver_managed_dma = true,
|
||
|
};
|
||
|
|
||
|
module_pci_driver(nvgrace_gpu_vfio_pci_driver);
|
||
|
|
||
|
MODULE_LICENSE("GPL");
|
||
|
MODULE_AUTHOR("Ankit Agrawal <ankita@nvidia.com>");
|
||
|
MODULE_AUTHOR("Aniket Agashe <aniketa@nvidia.com>");
|
||
|
MODULE_DESCRIPTION("VFIO NVGRACE GPU PF - User Level driver for NVIDIA devices with CPU coherently accessible device memory");
|