JustOS/linux-6.13/drivers/iommu/riscv/iommu.c

1662 lines
48 KiB
C
Raw Normal View History

2025-01-24 14:00:19 +00:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* IOMMU API for RISC-V IOMMU implementations.
*
* Copyright © 2022-2024 Rivos Inc.
* Copyright © 2023 FORTH-ICS/CARV
*
* Authors
* Tomasz Jeznach <tjeznach@rivosinc.com>
* Nick Kossifidis <mick@ics.forth.gr>
*/
#define pr_fmt(fmt) "riscv-iommu: " fmt
#include <linux/compiler.h>
#include <linux/crash_dump.h>
#include <linux/init.h>
#include <linux/iommu.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include "../iommu-pages.h"
#include "iommu-bits.h"
#include "iommu.h"
/* Timeouts in [us] */
#define RISCV_IOMMU_QCSR_TIMEOUT 150000
#define RISCV_IOMMU_QUEUE_TIMEOUT 150000
#define RISCV_IOMMU_DDTP_TIMEOUT 10000000
#define RISCV_IOMMU_IOTINVAL_TIMEOUT 90000000
/* Number of entries per CMD/FLT queue, should be <= INT_MAX */
#define RISCV_IOMMU_DEF_CQ_COUNT 8192
#define RISCV_IOMMU_DEF_FQ_COUNT 4096
/* RISC-V IOMMU PPN <> PHYS address conversions, PHYS <=> PPN[53:10] */
#define phys_to_ppn(pa) (((pa) >> 2) & (((1ULL << 44) - 1) << 10))
#define ppn_to_phys(pn) (((pn) << 2) & (((1ULL << 44) - 1) << 12))
#define dev_to_iommu(dev) \
iommu_get_iommu_dev(dev, struct riscv_iommu_device, iommu)
/* IOMMU PSCID allocation namespace. */
static DEFINE_IDA(riscv_iommu_pscids);
#define RISCV_IOMMU_MAX_PSCID (BIT(20) - 1)
/* Device resource-managed allocations */
struct riscv_iommu_devres {
void *addr;
int order;
};
static void riscv_iommu_devres_pages_release(struct device *dev, void *res)
{
struct riscv_iommu_devres *devres = res;
iommu_free_pages(devres->addr, devres->order);
}
static int riscv_iommu_devres_pages_match(struct device *dev, void *res, void *p)
{
struct riscv_iommu_devres *devres = res;
struct riscv_iommu_devres *target = p;
return devres->addr == target->addr;
}
static void *riscv_iommu_get_pages(struct riscv_iommu_device *iommu, int order)
{
struct riscv_iommu_devres *devres;
void *addr;
addr = iommu_alloc_pages_node(dev_to_node(iommu->dev),
GFP_KERNEL_ACCOUNT, order);
if (unlikely(!addr))
return NULL;
devres = devres_alloc(riscv_iommu_devres_pages_release,
sizeof(struct riscv_iommu_devres), GFP_KERNEL);
if (unlikely(!devres)) {
iommu_free_pages(addr, order);
return NULL;
}
devres->addr = addr;
devres->order = order;
devres_add(iommu->dev, devres);
return addr;
}
static void riscv_iommu_free_pages(struct riscv_iommu_device *iommu, void *addr)
{
struct riscv_iommu_devres devres = { .addr = addr };
devres_release(iommu->dev, riscv_iommu_devres_pages_release,
riscv_iommu_devres_pages_match, &devres);
}
/*
* Hardware queue allocation and management.
*/
/* Setup queue base, control registers and default queue length */
#define RISCV_IOMMU_QUEUE_INIT(q, name) do { \
struct riscv_iommu_queue *_q = q; \
_q->qid = RISCV_IOMMU_INTR_ ## name; \
_q->qbr = RISCV_IOMMU_REG_ ## name ## B; \
_q->qcr = RISCV_IOMMU_REG_ ## name ## CSR; \
_q->mask = _q->mask ?: (RISCV_IOMMU_DEF_ ## name ## _COUNT) - 1;\
} while (0)
/* Note: offsets are the same for all queues */
#define Q_HEAD(q) ((q)->qbr + (RISCV_IOMMU_REG_CQH - RISCV_IOMMU_REG_CQB))
#define Q_TAIL(q) ((q)->qbr + (RISCV_IOMMU_REG_CQT - RISCV_IOMMU_REG_CQB))
#define Q_ITEM(q, index) ((q)->mask & (index))
#define Q_IPSR(q) BIT((q)->qid)
/*
* Discover queue ring buffer hardware configuration, allocate in-memory
* ring buffer or use fixed I/O memory location, configure queue base register.
* Must be called before hardware queue is enabled.
*
* @queue - data structure, configured with RISCV_IOMMU_QUEUE_INIT()
* @entry_size - queue single element size in bytes.
*/
static int riscv_iommu_queue_alloc(struct riscv_iommu_device *iommu,
struct riscv_iommu_queue *queue,
size_t entry_size)
{
unsigned int logsz;
u64 qb, rb;
/*
* Use WARL base register property to discover maximum allowed
* number of entries and optional fixed IO address for queue location.
*/
riscv_iommu_writeq(iommu, queue->qbr, RISCV_IOMMU_QUEUE_LOG2SZ_FIELD);
qb = riscv_iommu_readq(iommu, queue->qbr);
/*
* Calculate and verify hardware supported queue length, as reported
* by the field LOG2SZ, where max queue length is equal to 2^(LOG2SZ + 1).
* Update queue size based on hardware supported value.
*/
logsz = ilog2(queue->mask);
if (logsz > FIELD_GET(RISCV_IOMMU_QUEUE_LOG2SZ_FIELD, qb))
logsz = FIELD_GET(RISCV_IOMMU_QUEUE_LOG2SZ_FIELD, qb);
/*
* Use WARL base register property to discover an optional fixed IO
* address for queue ring buffer location. Otherwise allocate contiguous
* system memory.
*/
if (FIELD_GET(RISCV_IOMMU_PPN_FIELD, qb)) {
const size_t queue_size = entry_size << (logsz + 1);
queue->phys = pfn_to_phys(FIELD_GET(RISCV_IOMMU_PPN_FIELD, qb));
queue->base = devm_ioremap(iommu->dev, queue->phys, queue_size);
} else {
do {
const size_t queue_size = entry_size << (logsz + 1);
const int order = get_order(queue_size);
queue->base = riscv_iommu_get_pages(iommu, order);
queue->phys = __pa(queue->base);
} while (!queue->base && logsz-- > 0);
}
if (!queue->base)
return -ENOMEM;
qb = phys_to_ppn(queue->phys) |
FIELD_PREP(RISCV_IOMMU_QUEUE_LOG2SZ_FIELD, logsz);
/* Update base register and read back to verify hw accepted our write */
riscv_iommu_writeq(iommu, queue->qbr, qb);
rb = riscv_iommu_readq(iommu, queue->qbr);
if (rb != qb) {
dev_err(iommu->dev, "queue #%u allocation failed\n", queue->qid);
return -ENODEV;
}
/* Update actual queue mask */
queue->mask = (2U << logsz) - 1;
dev_dbg(iommu->dev, "queue #%u allocated 2^%u entries",
queue->qid, logsz + 1);
return 0;
}
/* Check interrupt queue status, IPSR */
static irqreturn_t riscv_iommu_queue_ipsr(int irq, void *data)
{
struct riscv_iommu_queue *queue = (struct riscv_iommu_queue *)data;
if (riscv_iommu_readl(queue->iommu, RISCV_IOMMU_REG_IPSR) & Q_IPSR(queue))
return IRQ_WAKE_THREAD;
return IRQ_NONE;
}
static int riscv_iommu_queue_vec(struct riscv_iommu_device *iommu, int n)
{
/* Reuse ICVEC.CIV mask for all interrupt vectors mapping. */
return (iommu->icvec >> (n * 4)) & RISCV_IOMMU_ICVEC_CIV;
}
/*
* Enable queue processing in the hardware, register interrupt handler.
*
* @queue - data structure, already allocated with riscv_iommu_queue_alloc()
* @irq_handler - threaded interrupt handler.
*/
static int riscv_iommu_queue_enable(struct riscv_iommu_device *iommu,
struct riscv_iommu_queue *queue,
irq_handler_t irq_handler)
{
const unsigned int irq = iommu->irqs[riscv_iommu_queue_vec(iommu, queue->qid)];
u32 csr;
int rc;
if (queue->iommu)
return -EBUSY;
/* Polling not implemented */
if (!irq)
return -ENODEV;
queue->iommu = iommu;
rc = request_threaded_irq(irq, riscv_iommu_queue_ipsr, irq_handler,
IRQF_ONESHOT | IRQF_SHARED,
dev_name(iommu->dev), queue);
if (rc) {
queue->iommu = NULL;
return rc;
}
/*
* Enable queue with interrupts, clear any memory fault if any.
* Wait for the hardware to acknowledge request and activate queue
* processing.
* Note: All CSR bitfields are in the same offsets for all queues.
*/
riscv_iommu_writel(iommu, queue->qcr,
RISCV_IOMMU_QUEUE_ENABLE |
RISCV_IOMMU_QUEUE_INTR_ENABLE |
RISCV_IOMMU_QUEUE_MEM_FAULT);
riscv_iommu_readl_timeout(iommu, queue->qcr,
csr, !(csr & RISCV_IOMMU_QUEUE_BUSY),
10, RISCV_IOMMU_QCSR_TIMEOUT);
if (RISCV_IOMMU_QUEUE_ACTIVE != (csr & (RISCV_IOMMU_QUEUE_ACTIVE |
RISCV_IOMMU_QUEUE_BUSY |
RISCV_IOMMU_QUEUE_MEM_FAULT))) {
/* Best effort to stop and disable failing hardware queue. */
riscv_iommu_writel(iommu, queue->qcr, 0);
free_irq(irq, queue);
queue->iommu = NULL;
dev_err(iommu->dev, "queue #%u failed to start\n", queue->qid);
return -EBUSY;
}
/* Clear any pending interrupt flag. */
riscv_iommu_writel(iommu, RISCV_IOMMU_REG_IPSR, Q_IPSR(queue));
return 0;
}
/*
* Disable queue. Wait for the hardware to acknowledge request and
* stop processing enqueued requests. Report errors but continue.
*/
static void riscv_iommu_queue_disable(struct riscv_iommu_queue *queue)
{
struct riscv_iommu_device *iommu = queue->iommu;
u32 csr;
if (!iommu)
return;
free_irq(iommu->irqs[riscv_iommu_queue_vec(iommu, queue->qid)], queue);
riscv_iommu_writel(iommu, queue->qcr, 0);
riscv_iommu_readl_timeout(iommu, queue->qcr,
csr, !(csr & RISCV_IOMMU_QUEUE_BUSY),
10, RISCV_IOMMU_QCSR_TIMEOUT);
if (csr & (RISCV_IOMMU_QUEUE_ACTIVE | RISCV_IOMMU_QUEUE_BUSY))
dev_err(iommu->dev, "fail to disable hardware queue #%u, csr 0x%x\n",
queue->qid, csr);
queue->iommu = NULL;
}
/*
* Returns number of available valid queue entries and the first item index.
* Update shadow producer index if necessary.
*/
static int riscv_iommu_queue_consume(struct riscv_iommu_queue *queue,
unsigned int *index)
{
unsigned int head = atomic_read(&queue->head);
unsigned int tail = atomic_read(&queue->tail);
unsigned int last = Q_ITEM(queue, tail);
int available = (int)(tail - head);
*index = head;
if (available > 0)
return available;
/* read hardware producer index, check reserved register bits are not set. */
if (riscv_iommu_readl_timeout(queue->iommu, Q_TAIL(queue),
tail, (tail & ~queue->mask) == 0,
0, RISCV_IOMMU_QUEUE_TIMEOUT)) {
dev_err_once(queue->iommu->dev,
"Hardware error: queue access timeout\n");
return 0;
}
if (tail == last)
return 0;
/* update shadow producer index */
return (int)(atomic_add_return((tail - last) & queue->mask, &queue->tail) - head);
}
/*
* Release processed queue entries, should match riscv_iommu_queue_consume() calls.
*/
static void riscv_iommu_queue_release(struct riscv_iommu_queue *queue, int count)
{
const unsigned int head = atomic_add_return(count, &queue->head);
riscv_iommu_writel(queue->iommu, Q_HEAD(queue), Q_ITEM(queue, head));
}
/* Return actual consumer index based on hardware reported queue head index. */
static unsigned int riscv_iommu_queue_cons(struct riscv_iommu_queue *queue)
{
const unsigned int cons = atomic_read(&queue->head);
const unsigned int last = Q_ITEM(queue, cons);
unsigned int head;
if (riscv_iommu_readl_timeout(queue->iommu, Q_HEAD(queue), head,
!(head & ~queue->mask),
0, RISCV_IOMMU_QUEUE_TIMEOUT))
return cons;
return cons + ((head - last) & queue->mask);
}
/* Wait for submitted item to be processed. */
static int riscv_iommu_queue_wait(struct riscv_iommu_queue *queue,
unsigned int index,
unsigned int timeout_us)
{
unsigned int cons = atomic_read(&queue->head);
/* Already processed by the consumer */
if ((int)(cons - index) > 0)
return 0;
/* Monitor consumer index */
return readx_poll_timeout(riscv_iommu_queue_cons, queue, cons,
(int)(cons - index) > 0, 0, timeout_us);
}
/* Enqueue an entry and wait to be processed if timeout_us > 0
*
* Error handling for IOMMU hardware not responding in reasonable time
* will be added as separate patch series along with other RAS features.
* For now, only report hardware failure and continue.
*/
static unsigned int riscv_iommu_queue_send(struct riscv_iommu_queue *queue,
void *entry, size_t entry_size)
{
unsigned int prod;
unsigned int head;
unsigned int tail;
unsigned long flags;
/* Do not preempt submission flow. */
local_irq_save(flags);
/* 1. Allocate some space in the queue */
prod = atomic_inc_return(&queue->prod) - 1;
head = atomic_read(&queue->head);
/* 2. Wait for space availability. */
if ((prod - head) > queue->mask) {
if (readx_poll_timeout(atomic_read, &queue->head,
head, (prod - head) < queue->mask,
0, RISCV_IOMMU_QUEUE_TIMEOUT))
goto err_busy;
} else if ((prod - head) == queue->mask) {
const unsigned int last = Q_ITEM(queue, head);
if (riscv_iommu_readl_timeout(queue->iommu, Q_HEAD(queue), head,
!(head & ~queue->mask) && head != last,
0, RISCV_IOMMU_QUEUE_TIMEOUT))
goto err_busy;
atomic_add((head - last) & queue->mask, &queue->head);
}
/* 3. Store entry in the ring buffer */
memcpy(queue->base + Q_ITEM(queue, prod) * entry_size, entry, entry_size);
/* 4. Wait for all previous entries to be ready */
if (readx_poll_timeout(atomic_read, &queue->tail, tail, prod == tail,
0, RISCV_IOMMU_QUEUE_TIMEOUT))
goto err_busy;
/*
* 5. Make sure the ring buffer update (whether in normal or I/O memory) is
* completed and visible before signaling the tail doorbell to fetch
* the next command. 'fence ow, ow'
*/
dma_wmb();
riscv_iommu_writel(queue->iommu, Q_TAIL(queue), Q_ITEM(queue, prod + 1));
/*
* 6. Make sure the doorbell write to the device has finished before updating
* the shadow tail index in normal memory. 'fence o, w'
*/
mmiowb();
atomic_inc(&queue->tail);
/* 7. Complete submission and restore local interrupts */
local_irq_restore(flags);
return prod;
err_busy:
local_irq_restore(flags);
dev_err_once(queue->iommu->dev, "Hardware error: command enqueue failed\n");
return prod;
}
/*
* IOMMU Command queue chapter 3.1
*/
/* Command queue interrupt handler thread function */
static irqreturn_t riscv_iommu_cmdq_process(int irq, void *data)
{
const struct riscv_iommu_queue *queue = (struct riscv_iommu_queue *)data;
unsigned int ctrl;
/* Clear MF/CQ errors, complete error recovery to be implemented. */
ctrl = riscv_iommu_readl(queue->iommu, queue->qcr);
if (ctrl & (RISCV_IOMMU_CQCSR_CQMF | RISCV_IOMMU_CQCSR_CMD_TO |
RISCV_IOMMU_CQCSR_CMD_ILL | RISCV_IOMMU_CQCSR_FENCE_W_IP)) {
riscv_iommu_writel(queue->iommu, queue->qcr, ctrl);
dev_warn(queue->iommu->dev,
"Queue #%u error; fault:%d timeout:%d illegal:%d fence_w_ip:%d\n",
queue->qid,
!!(ctrl & RISCV_IOMMU_CQCSR_CQMF),
!!(ctrl & RISCV_IOMMU_CQCSR_CMD_TO),
!!(ctrl & RISCV_IOMMU_CQCSR_CMD_ILL),
!!(ctrl & RISCV_IOMMU_CQCSR_FENCE_W_IP));
}
/* Placeholder for command queue interrupt notifiers */
/* Clear command interrupt pending. */
riscv_iommu_writel(queue->iommu, RISCV_IOMMU_REG_IPSR, Q_IPSR(queue));
return IRQ_HANDLED;
}
/* Send command to the IOMMU command queue */
static void riscv_iommu_cmd_send(struct riscv_iommu_device *iommu,
struct riscv_iommu_command *cmd)
{
riscv_iommu_queue_send(&iommu->cmdq, cmd, sizeof(*cmd));
}
/* Send IOFENCE.C command and wait for all scheduled commands to complete. */
static void riscv_iommu_cmd_sync(struct riscv_iommu_device *iommu,
unsigned int timeout_us)
{
struct riscv_iommu_command cmd;
unsigned int prod;
riscv_iommu_cmd_iofence(&cmd);
prod = riscv_iommu_queue_send(&iommu->cmdq, &cmd, sizeof(cmd));
if (!timeout_us)
return;
if (riscv_iommu_queue_wait(&iommu->cmdq, prod, timeout_us))
dev_err_once(iommu->dev,
"Hardware error: command execution timeout\n");
}
/*
* IOMMU Fault/Event queue chapter 3.2
*/
static void riscv_iommu_fault(struct riscv_iommu_device *iommu,
struct riscv_iommu_fq_record *event)
{
unsigned int err = FIELD_GET(RISCV_IOMMU_FQ_HDR_CAUSE, event->hdr);
unsigned int devid = FIELD_GET(RISCV_IOMMU_FQ_HDR_DID, event->hdr);
/* Placeholder for future fault handling implementation, report only. */
if (err)
dev_warn_ratelimited(iommu->dev,
"Fault %d devid: 0x%x iotval: %llx iotval2: %llx\n",
err, devid, event->iotval, event->iotval2);
}
/* Fault queue interrupt handler thread function */
static irqreturn_t riscv_iommu_fltq_process(int irq, void *data)
{
struct riscv_iommu_queue *queue = (struct riscv_iommu_queue *)data;
struct riscv_iommu_device *iommu = queue->iommu;
struct riscv_iommu_fq_record *events;
unsigned int ctrl, idx;
int cnt, len;
events = (struct riscv_iommu_fq_record *)queue->base;
/* Clear fault interrupt pending and process all received fault events. */
riscv_iommu_writel(iommu, RISCV_IOMMU_REG_IPSR, Q_IPSR(queue));
do {
cnt = riscv_iommu_queue_consume(queue, &idx);
for (len = 0; len < cnt; idx++, len++)
riscv_iommu_fault(iommu, &events[Q_ITEM(queue, idx)]);
riscv_iommu_queue_release(queue, cnt);
} while (cnt > 0);
/* Clear MF/OF errors, complete error recovery to be implemented. */
ctrl = riscv_iommu_readl(iommu, queue->qcr);
if (ctrl & (RISCV_IOMMU_FQCSR_FQMF | RISCV_IOMMU_FQCSR_FQOF)) {
riscv_iommu_writel(iommu, queue->qcr, ctrl);
dev_warn(iommu->dev,
"Queue #%u error; memory fault:%d overflow:%d\n",
queue->qid,
!!(ctrl & RISCV_IOMMU_FQCSR_FQMF),
!!(ctrl & RISCV_IOMMU_FQCSR_FQOF));
}
return IRQ_HANDLED;
}
/* Lookup and initialize device context info structure. */
static struct riscv_iommu_dc *riscv_iommu_get_dc(struct riscv_iommu_device *iommu,
unsigned int devid)
{
const bool base_format = !(iommu->caps & RISCV_IOMMU_CAPABILITIES_MSI_FLAT);
unsigned int depth;
unsigned long ddt, old, new;
void *ptr;
u8 ddi_bits[3] = { 0 };
u64 *ddtp = NULL;
/* Make sure the mode is valid */
if (iommu->ddt_mode < RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL ||
iommu->ddt_mode > RISCV_IOMMU_DDTP_IOMMU_MODE_3LVL)
return NULL;
/*
* Device id partitioning for base format:
* DDI[0]: bits 0 - 6 (1st level) (7 bits)
* DDI[1]: bits 7 - 15 (2nd level) (9 bits)
* DDI[2]: bits 16 - 23 (3rd level) (8 bits)
*
* For extended format:
* DDI[0]: bits 0 - 5 (1st level) (6 bits)
* DDI[1]: bits 6 - 14 (2nd level) (9 bits)
* DDI[2]: bits 15 - 23 (3rd level) (9 bits)
*/
if (base_format) {
ddi_bits[0] = 7;
ddi_bits[1] = 7 + 9;
ddi_bits[2] = 7 + 9 + 8;
} else {
ddi_bits[0] = 6;
ddi_bits[1] = 6 + 9;
ddi_bits[2] = 6 + 9 + 9;
}
/* Make sure device id is within range */
depth = iommu->ddt_mode - RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL;
if (devid >= (1 << ddi_bits[depth]))
return NULL;
/* Get to the level of the non-leaf node that holds the device context */
for (ddtp = iommu->ddt_root; depth-- > 0;) {
const int split = ddi_bits[depth];
/*
* Each non-leaf node is 64bits wide and on each level
* nodes are indexed by DDI[depth].
*/
ddtp += (devid >> split) & 0x1FF;
/*
* Check if this node has been populated and if not
* allocate a new level and populate it.
*/
do {
ddt = READ_ONCE(*(unsigned long *)ddtp);
if (ddt & RISCV_IOMMU_DDTE_V) {
ddtp = __va(ppn_to_phys(ddt));
break;
}
ptr = riscv_iommu_get_pages(iommu, 0);
if (!ptr)
return NULL;
new = phys_to_ppn(__pa(ptr)) | RISCV_IOMMU_DDTE_V;
old = cmpxchg_relaxed((unsigned long *)ddtp, ddt, new);
if (old == ddt) {
ddtp = (u64 *)ptr;
break;
}
/* Race setting DDT detected, re-read and retry. */
riscv_iommu_free_pages(iommu, ptr);
} while (1);
}
/*
* Grab the node that matches DDI[depth], note that when using base
* format the device context is 4 * 64bits, and the extended format
* is 8 * 64bits, hence the (3 - base_format) below.
*/
ddtp += (devid & ((64 << base_format) - 1)) << (3 - base_format);
return (struct riscv_iommu_dc *)ddtp;
}
/*
* This is best effort IOMMU translation shutdown flow.
* Disable IOMMU without waiting for hardware response.
*/
static void riscv_iommu_disable(struct riscv_iommu_device *iommu)
{
riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_DDTP, 0);
riscv_iommu_writel(iommu, RISCV_IOMMU_REG_CQCSR, 0);
riscv_iommu_writel(iommu, RISCV_IOMMU_REG_FQCSR, 0);
riscv_iommu_writel(iommu, RISCV_IOMMU_REG_PQCSR, 0);
}
#define riscv_iommu_read_ddtp(iommu) ({ \
u64 ddtp; \
riscv_iommu_readq_timeout((iommu), RISCV_IOMMU_REG_DDTP, ddtp, \
!(ddtp & RISCV_IOMMU_DDTP_BUSY), 10, \
RISCV_IOMMU_DDTP_TIMEOUT); \
ddtp; })
static int riscv_iommu_iodir_alloc(struct riscv_iommu_device *iommu)
{
u64 ddtp;
unsigned int mode;
ddtp = riscv_iommu_read_ddtp(iommu);
if (ddtp & RISCV_IOMMU_DDTP_BUSY)
return -EBUSY;
/*
* It is optional for the hardware to report a fixed address for device
* directory root page when DDT.MODE is OFF or BARE.
*/
mode = FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp);
if (mode == RISCV_IOMMU_DDTP_IOMMU_MODE_BARE ||
mode == RISCV_IOMMU_DDTP_IOMMU_MODE_OFF) {
/* Use WARL to discover hardware fixed DDT PPN */
riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_DDTP,
FIELD_PREP(RISCV_IOMMU_DDTP_IOMMU_MODE, mode));
ddtp = riscv_iommu_read_ddtp(iommu);
if (ddtp & RISCV_IOMMU_DDTP_BUSY)
return -EBUSY;
iommu->ddt_phys = ppn_to_phys(ddtp);
if (iommu->ddt_phys)
iommu->ddt_root = devm_ioremap(iommu->dev,
iommu->ddt_phys, PAGE_SIZE);
if (iommu->ddt_root)
memset(iommu->ddt_root, 0, PAGE_SIZE);
}
if (!iommu->ddt_root) {
iommu->ddt_root = riscv_iommu_get_pages(iommu, 0);
iommu->ddt_phys = __pa(iommu->ddt_root);
}
if (!iommu->ddt_root)
return -ENOMEM;
return 0;
}
/*
* Discover supported DDT modes starting from requested value,
* configure DDTP register with accepted mode and root DDT address.
* Accepted iommu->ddt_mode is updated on success.
*/
static int riscv_iommu_iodir_set_mode(struct riscv_iommu_device *iommu,
unsigned int ddtp_mode)
{
struct device *dev = iommu->dev;
u64 ddtp, rq_ddtp;
unsigned int mode, rq_mode = ddtp_mode;
struct riscv_iommu_command cmd;
ddtp = riscv_iommu_read_ddtp(iommu);
if (ddtp & RISCV_IOMMU_DDTP_BUSY)
return -EBUSY;
/* Disallow state transition from xLVL to xLVL. */
mode = FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp);
if (mode != RISCV_IOMMU_DDTP_IOMMU_MODE_BARE &&
mode != RISCV_IOMMU_DDTP_IOMMU_MODE_OFF &&
rq_mode != RISCV_IOMMU_DDTP_IOMMU_MODE_BARE &&
rq_mode != RISCV_IOMMU_DDTP_IOMMU_MODE_OFF)
return -EINVAL;
do {
rq_ddtp = FIELD_PREP(RISCV_IOMMU_DDTP_IOMMU_MODE, rq_mode);
if (rq_mode > RISCV_IOMMU_DDTP_IOMMU_MODE_BARE)
rq_ddtp |= phys_to_ppn(iommu->ddt_phys);
riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_DDTP, rq_ddtp);
ddtp = riscv_iommu_read_ddtp(iommu);
if (ddtp & RISCV_IOMMU_DDTP_BUSY) {
dev_err(dev, "timeout when setting ddtp (ddt mode: %u, read: %llx)\n",
rq_mode, ddtp);
return -EBUSY;
}
/* Verify IOMMU hardware accepts new DDTP config. */
mode = FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp);
if (rq_mode == mode)
break;
/* Hardware mandatory DDTP mode has not been accepted. */
if (rq_mode < RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL && rq_ddtp != ddtp) {
dev_err(dev, "DDTP update failed hw: %llx vs %llx\n",
ddtp, rq_ddtp);
return -EINVAL;
}
/*
* Mode field is WARL, an IOMMU may support a subset of
* directory table levels in which case if we tried to set
* an unsupported number of levels we'll readback either
* a valid xLVL or off/bare. If we got off/bare, try again
* with a smaller xLVL.
*/
if (mode < RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL &&
rq_mode > RISCV_IOMMU_DDTP_IOMMU_MODE_1LVL) {
dev_dbg(dev, "DDTP hw mode %u vs %u\n", mode, rq_mode);
rq_mode--;
continue;
}
/*
* We tried all supported modes and IOMMU hardware failed to
* accept new settings, something went very wrong since off/bare
* and at least one xLVL must be supported.
*/
dev_err(dev, "DDTP hw mode %u, failed to set %u\n",
mode, ddtp_mode);
return -EINVAL;
} while (1);
iommu->ddt_mode = mode;
if (mode != ddtp_mode)
dev_dbg(dev, "DDTP hw mode %u, requested %u\n", mode, ddtp_mode);
/* Invalidate device context cache */
riscv_iommu_cmd_iodir_inval_ddt(&cmd);
riscv_iommu_cmd_send(iommu, &cmd);
/* Invalidate address translation cache */
riscv_iommu_cmd_inval_vma(&cmd);
riscv_iommu_cmd_send(iommu, &cmd);
/* IOFENCE.C */
riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
return 0;
}
/* This struct contains protection domain specific IOMMU driver data. */
struct riscv_iommu_domain {
struct iommu_domain domain;
struct list_head bonds;
spinlock_t lock; /* protect bonds list updates. */
int pscid;
bool amo_enabled;
int numa_node;
unsigned int pgd_mode;
unsigned long *pgd_root;
};
#define iommu_domain_to_riscv(iommu_domain) \
container_of(iommu_domain, struct riscv_iommu_domain, domain)
/* Private IOMMU data for managed devices, dev_iommu_priv_* */
struct riscv_iommu_info {
struct riscv_iommu_domain *domain;
};
/*
* Linkage between an iommu_domain and attached devices.
*
* Protection domain requiring IOATC and DevATC translation cache invalidations,
* should be linked to attached devices using a riscv_iommu_bond structure.
* Devices should be linked to the domain before first use and unlinked after
* the translations from the referenced protection domain can no longer be used.
* Blocking and identity domains are not tracked here, as the IOMMU hardware
* does not cache negative and/or identity (BARE mode) translations, and DevATC
* is disabled for those protection domains.
*
* The device pointer and IOMMU data remain stable in the bond struct after
* _probe_device() where it's attached to the managed IOMMU, up to the
* completion of the _release_device() call. The release of the bond structure
* is synchronized with the device release.
*/
struct riscv_iommu_bond {
struct list_head list;
struct rcu_head rcu;
struct device *dev;
};
static int riscv_iommu_bond_link(struct riscv_iommu_domain *domain,
struct device *dev)
{
struct riscv_iommu_device *iommu = dev_to_iommu(dev);
struct riscv_iommu_bond *bond;
struct list_head *bonds;
bond = kzalloc(sizeof(*bond), GFP_KERNEL);
if (!bond)
return -ENOMEM;
bond->dev = dev;
/*
* List of devices attached to the domain is arranged based on
* managed IOMMU device.
*/
spin_lock(&domain->lock);
list_for_each(bonds, &domain->bonds)
if (dev_to_iommu(list_entry(bonds, struct riscv_iommu_bond, list)->dev) == iommu)
break;
list_add_rcu(&bond->list, bonds);
spin_unlock(&domain->lock);
/* Synchronize with riscv_iommu_iotlb_inval() sequence. See comment below. */
smp_mb();
return 0;
}
static void riscv_iommu_bond_unlink(struct riscv_iommu_domain *domain,
struct device *dev)
{
struct riscv_iommu_device *iommu = dev_to_iommu(dev);
struct riscv_iommu_bond *bond, *found = NULL;
struct riscv_iommu_command cmd;
int count = 0;
if (!domain)
return;
spin_lock(&domain->lock);
list_for_each_entry(bond, &domain->bonds, list) {
if (found && count)
break;
else if (bond->dev == dev)
found = bond;
else if (dev_to_iommu(bond->dev) == iommu)
count++;
}
if (found)
list_del_rcu(&found->list);
spin_unlock(&domain->lock);
kfree_rcu(found, rcu);
/*
* If this was the last bond between this domain and the IOMMU
* invalidate all cached entries for domain's PSCID.
*/
if (!count) {
riscv_iommu_cmd_inval_vma(&cmd);
riscv_iommu_cmd_inval_set_pscid(&cmd, domain->pscid);
riscv_iommu_cmd_send(iommu, &cmd);
riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
}
}
/*
* Send IOTLB.INVAL for whole address space for ranges larger than 2MB.
* This limit will be replaced with range invalidations, if supported by
* the hardware, when RISC-V IOMMU architecture specification update for
* range invalidations update will be available.
*/
#define RISCV_IOMMU_IOTLB_INVAL_LIMIT (2 << 20)
static void riscv_iommu_iotlb_inval(struct riscv_iommu_domain *domain,
unsigned long start, unsigned long end)
{
struct riscv_iommu_bond *bond;
struct riscv_iommu_device *iommu, *prev;
struct riscv_iommu_command cmd;
unsigned long len = end - start + 1;
unsigned long iova;
/*
* For each IOMMU linked with this protection domain (via bonds->dev),
* an IOTLB invaliation command will be submitted and executed.
*
* Possbile race with domain attach flow is handled by sequencing
* bond creation - riscv_iommu_bond_link(), and device directory
* update - riscv_iommu_iodir_update().
*
* PTE Update / IOTLB Inval Device attach & directory update
* -------------------------- --------------------------
* update page table entries add dev to the bond list
* FENCE RW,RW FENCE RW,RW
* For all IOMMUs: (can be empty) Update FSC/PSCID
* FENCE IOW,IOW FENCE IOW,IOW
* IOTLB.INVAL IODIR.INVAL
* IOFENCE.C
*
* If bond list is not updated with new device, directory context will
* be configured with already valid page table content. If an IOMMU is
* linked to the protection domain it will receive invalidation
* requests for updated page table entries.
*/
smp_mb();
rcu_read_lock();
prev = NULL;
list_for_each_entry_rcu(bond, &domain->bonds, list) {
iommu = dev_to_iommu(bond->dev);
/*
* IOTLB invalidation request can be safely omitted if already sent
* to the IOMMU for the same PSCID, and with domain->bonds list
* arranged based on the device's IOMMU, it's sufficient to check
* last device the invalidation was sent to.
*/
if (iommu == prev)
continue;
riscv_iommu_cmd_inval_vma(&cmd);
riscv_iommu_cmd_inval_set_pscid(&cmd, domain->pscid);
if (len && len < RISCV_IOMMU_IOTLB_INVAL_LIMIT) {
for (iova = start; iova < end; iova += PAGE_SIZE) {
riscv_iommu_cmd_inval_set_addr(&cmd, iova);
riscv_iommu_cmd_send(iommu, &cmd);
}
} else {
riscv_iommu_cmd_send(iommu, &cmd);
}
prev = iommu;
}
prev = NULL;
list_for_each_entry_rcu(bond, &domain->bonds, list) {
iommu = dev_to_iommu(bond->dev);
if (iommu == prev)
continue;
riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
prev = iommu;
}
rcu_read_unlock();
}
#define RISCV_IOMMU_FSC_BARE 0
/*
* Update IODIR for the device.
*
* During the execution of riscv_iommu_probe_device(), IODIR entries are
* allocated for the device's identifiers. Device context invalidation
* becomes necessary only if one of the updated entries was previously
* marked as valid, given that invalid device context entries are not
* cached by the IOMMU hardware.
* In this implementation, updating a valid device context while the
* device is not quiesced might be disruptive, potentially causing
* interim translation faults.
*/
static void riscv_iommu_iodir_update(struct riscv_iommu_device *iommu,
struct device *dev, u64 fsc, u64 ta)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct riscv_iommu_dc *dc;
struct riscv_iommu_command cmd;
bool sync_required = false;
u64 tc;
int i;
for (i = 0; i < fwspec->num_ids; i++) {
dc = riscv_iommu_get_dc(iommu, fwspec->ids[i]);
tc = READ_ONCE(dc->tc);
if (!(tc & RISCV_IOMMU_DC_TC_V))
continue;
WRITE_ONCE(dc->tc, tc & ~RISCV_IOMMU_DC_TC_V);
/* Invalidate device context cached values */
riscv_iommu_cmd_iodir_inval_ddt(&cmd);
riscv_iommu_cmd_iodir_set_did(&cmd, fwspec->ids[i]);
riscv_iommu_cmd_send(iommu, &cmd);
sync_required = true;
}
if (sync_required)
riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
/*
* For device context with DC_TC_PDTV = 0, translation attributes valid bit
* is stored as DC_TC_V bit (both sharing the same location at BIT(0)).
*/
for (i = 0; i < fwspec->num_ids; i++) {
dc = riscv_iommu_get_dc(iommu, fwspec->ids[i]);
tc = READ_ONCE(dc->tc);
tc |= ta & RISCV_IOMMU_DC_TC_V;
WRITE_ONCE(dc->fsc, fsc);
WRITE_ONCE(dc->ta, ta & RISCV_IOMMU_PC_TA_PSCID);
/* Update device context, write TC.V as the last step. */
dma_wmb();
WRITE_ONCE(dc->tc, tc);
/* Invalidate device context after update */
riscv_iommu_cmd_iodir_inval_ddt(&cmd);
riscv_iommu_cmd_iodir_set_did(&cmd, fwspec->ids[i]);
riscv_iommu_cmd_send(iommu, &cmd);
}
riscv_iommu_cmd_sync(iommu, RISCV_IOMMU_IOTINVAL_TIMEOUT);
}
/*
* IOVA page translation tree management.
*/
static void riscv_iommu_iotlb_flush_all(struct iommu_domain *iommu_domain)
{
struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
riscv_iommu_iotlb_inval(domain, 0, ULONG_MAX);
}
static void riscv_iommu_iotlb_sync(struct iommu_domain *iommu_domain,
struct iommu_iotlb_gather *gather)
{
struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
riscv_iommu_iotlb_inval(domain, gather->start, gather->end);
}
#define PT_SHIFT (PAGE_SHIFT - ilog2(sizeof(pte_t)))
#define _io_pte_present(pte) ((pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE))
#define _io_pte_leaf(pte) ((pte) & _PAGE_LEAF)
#define _io_pte_none(pte) ((pte) == 0)
#define _io_pte_entry(pn, prot) ((_PAGE_PFN_MASK & ((pn) << _PAGE_PFN_SHIFT)) | (prot))
static void riscv_iommu_pte_free(struct riscv_iommu_domain *domain,
unsigned long pte, struct list_head *freelist)
{
unsigned long *ptr;
int i;
if (!_io_pte_present(pte) || _io_pte_leaf(pte))
return;
ptr = (unsigned long *)pfn_to_virt(__page_val_to_pfn(pte));
/* Recursively free all sub page table pages */
for (i = 0; i < PTRS_PER_PTE; i++) {
pte = READ_ONCE(ptr[i]);
if (!_io_pte_none(pte) && cmpxchg_relaxed(ptr + i, pte, 0) == pte)
riscv_iommu_pte_free(domain, pte, freelist);
}
if (freelist)
list_add_tail(&virt_to_page(ptr)->lru, freelist);
else
iommu_free_page(ptr);
}
static unsigned long *riscv_iommu_pte_alloc(struct riscv_iommu_domain *domain,
unsigned long iova, size_t pgsize,
gfp_t gfp)
{
unsigned long *ptr = domain->pgd_root;
unsigned long pte, old;
int level = domain->pgd_mode - RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39 + 2;
void *addr;
do {
const int shift = PAGE_SHIFT + PT_SHIFT * level;
ptr += ((iova >> shift) & (PTRS_PER_PTE - 1));
/*
* Note: returned entry might be a non-leaf if there was
* existing mapping with smaller granularity. Up to the caller
* to replace and invalidate.
*/
if (((size_t)1 << shift) == pgsize)
return ptr;
pte_retry:
pte = READ_ONCE(*ptr);
/*
* This is very likely incorrect as we should not be adding
* new mapping with smaller granularity on top
* of existing 2M/1G mapping. Fail.
*/
if (_io_pte_present(pte) && _io_pte_leaf(pte))
return NULL;
/*
* Non-leaf entry is missing, allocate and try to add to the
* page table. This might race with other mappings, retry.
*/
if (_io_pte_none(pte)) {
addr = iommu_alloc_page_node(domain->numa_node, gfp);
if (!addr)
return NULL;
old = pte;
pte = _io_pte_entry(virt_to_pfn(addr), _PAGE_TABLE);
if (cmpxchg_relaxed(ptr, old, pte) != old) {
iommu_free_page(addr);
goto pte_retry;
}
}
ptr = (unsigned long *)pfn_to_virt(__page_val_to_pfn(pte));
} while (level-- > 0);
return NULL;
}
static unsigned long *riscv_iommu_pte_fetch(struct riscv_iommu_domain *domain,
unsigned long iova, size_t *pte_pgsize)
{
unsigned long *ptr = domain->pgd_root;
unsigned long pte;
int level = domain->pgd_mode - RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39 + 2;
do {
const int shift = PAGE_SHIFT + PT_SHIFT * level;
ptr += ((iova >> shift) & (PTRS_PER_PTE - 1));
pte = READ_ONCE(*ptr);
if (_io_pte_present(pte) && _io_pte_leaf(pte)) {
*pte_pgsize = (size_t)1 << shift;
return ptr;
}
if (_io_pte_none(pte))
return NULL;
ptr = (unsigned long *)pfn_to_virt(__page_val_to_pfn(pte));
} while (level-- > 0);
return NULL;
}
static int riscv_iommu_map_pages(struct iommu_domain *iommu_domain,
unsigned long iova, phys_addr_t phys,
size_t pgsize, size_t pgcount, int prot,
gfp_t gfp, size_t *mapped)
{
struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
size_t size = 0;
unsigned long *ptr;
unsigned long pte, old, pte_prot;
int rc = 0;
LIST_HEAD(freelist);
if (!(prot & IOMMU_WRITE))
pte_prot = _PAGE_BASE | _PAGE_READ;
else if (domain->amo_enabled)
pte_prot = _PAGE_BASE | _PAGE_READ | _PAGE_WRITE;
else
pte_prot = _PAGE_BASE | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY;
while (pgcount) {
ptr = riscv_iommu_pte_alloc(domain, iova, pgsize, gfp);
if (!ptr) {
rc = -ENOMEM;
break;
}
old = READ_ONCE(*ptr);
pte = _io_pte_entry(phys_to_pfn(phys), pte_prot);
if (cmpxchg_relaxed(ptr, old, pte) != old)
continue;
riscv_iommu_pte_free(domain, old, &freelist);
size += pgsize;
iova += pgsize;
phys += pgsize;
--pgcount;
}
*mapped = size;
if (!list_empty(&freelist)) {
/*
* In 1.0 spec version, the smallest scope we can use to
* invalidate all levels of page table (i.e. leaf and non-leaf)
* is an invalidate-all-PSCID IOTINVAL.VMA with AV=0.
* This will be updated with hardware support for
* capability.NL (non-leaf) IOTINVAL command.
*/
riscv_iommu_iotlb_inval(domain, 0, ULONG_MAX);
iommu_put_pages_list(&freelist);
}
return rc;
}
static size_t riscv_iommu_unmap_pages(struct iommu_domain *iommu_domain,
unsigned long iova, size_t pgsize,
size_t pgcount,
struct iommu_iotlb_gather *gather)
{
struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
size_t size = pgcount << __ffs(pgsize);
unsigned long *ptr, old;
size_t unmapped = 0;
size_t pte_size;
while (unmapped < size) {
ptr = riscv_iommu_pte_fetch(domain, iova, &pte_size);
if (!ptr)
return unmapped;
/* partial unmap is not allowed, fail. */
if (iova & (pte_size - 1))
return unmapped;
old = READ_ONCE(*ptr);
if (cmpxchg_relaxed(ptr, old, 0) != old)
continue;
iommu_iotlb_gather_add_page(&domain->domain, gather, iova,
pte_size);
iova += pte_size;
unmapped += pte_size;
}
return unmapped;
}
static phys_addr_t riscv_iommu_iova_to_phys(struct iommu_domain *iommu_domain,
dma_addr_t iova)
{
struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
unsigned long pte_size;
unsigned long *ptr;
ptr = riscv_iommu_pte_fetch(domain, iova, &pte_size);
if (_io_pte_none(*ptr) || !_io_pte_present(*ptr))
return 0;
return pfn_to_phys(__page_val_to_pfn(*ptr)) | (iova & (pte_size - 1));
}
static void riscv_iommu_free_paging_domain(struct iommu_domain *iommu_domain)
{
struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
const unsigned long pfn = virt_to_pfn(domain->pgd_root);
WARN_ON(!list_empty(&domain->bonds));
if ((int)domain->pscid > 0)
ida_free(&riscv_iommu_pscids, domain->pscid);
riscv_iommu_pte_free(domain, _io_pte_entry(pfn, _PAGE_TABLE), NULL);
kfree(domain);
}
static bool riscv_iommu_pt_supported(struct riscv_iommu_device *iommu, int pgd_mode)
{
switch (pgd_mode) {
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39:
return iommu->caps & RISCV_IOMMU_CAPABILITIES_SV39;
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV48:
return iommu->caps & RISCV_IOMMU_CAPABILITIES_SV48;
case RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57:
return iommu->caps & RISCV_IOMMU_CAPABILITIES_SV57;
}
return false;
}
static int riscv_iommu_attach_paging_domain(struct iommu_domain *iommu_domain,
struct device *dev)
{
struct riscv_iommu_domain *domain = iommu_domain_to_riscv(iommu_domain);
struct riscv_iommu_device *iommu = dev_to_iommu(dev);
struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
u64 fsc, ta;
if (!riscv_iommu_pt_supported(iommu, domain->pgd_mode))
return -ENODEV;
fsc = FIELD_PREP(RISCV_IOMMU_PC_FSC_MODE, domain->pgd_mode) |
FIELD_PREP(RISCV_IOMMU_PC_FSC_PPN, virt_to_pfn(domain->pgd_root));
ta = FIELD_PREP(RISCV_IOMMU_PC_TA_PSCID, domain->pscid) |
RISCV_IOMMU_PC_TA_V;
if (riscv_iommu_bond_link(domain, dev))
return -ENOMEM;
riscv_iommu_iodir_update(iommu, dev, fsc, ta);
riscv_iommu_bond_unlink(info->domain, dev);
info->domain = domain;
return 0;
}
static const struct iommu_domain_ops riscv_iommu_paging_domain_ops = {
.attach_dev = riscv_iommu_attach_paging_domain,
.free = riscv_iommu_free_paging_domain,
.map_pages = riscv_iommu_map_pages,
.unmap_pages = riscv_iommu_unmap_pages,
.iova_to_phys = riscv_iommu_iova_to_phys,
.iotlb_sync = riscv_iommu_iotlb_sync,
.flush_iotlb_all = riscv_iommu_iotlb_flush_all,
};
static struct iommu_domain *riscv_iommu_alloc_paging_domain(struct device *dev)
{
struct riscv_iommu_domain *domain;
struct riscv_iommu_device *iommu;
unsigned int pgd_mode;
dma_addr_t va_mask;
int va_bits;
iommu = dev_to_iommu(dev);
if (iommu->caps & RISCV_IOMMU_CAPABILITIES_SV57) {
pgd_mode = RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV57;
va_bits = 57;
} else if (iommu->caps & RISCV_IOMMU_CAPABILITIES_SV48) {
pgd_mode = RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV48;
va_bits = 48;
} else if (iommu->caps & RISCV_IOMMU_CAPABILITIES_SV39) {
pgd_mode = RISCV_IOMMU_DC_FSC_IOSATP_MODE_SV39;
va_bits = 39;
} else {
dev_err(dev, "cannot find supported page table mode\n");
return ERR_PTR(-ENODEV);
}
domain = kzalloc(sizeof(*domain), GFP_KERNEL);
if (!domain)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD_RCU(&domain->bonds);
spin_lock_init(&domain->lock);
domain->numa_node = dev_to_node(iommu->dev);
domain->amo_enabled = !!(iommu->caps & RISCV_IOMMU_CAPABILITIES_AMO_HWAD);
domain->pgd_mode = pgd_mode;
domain->pgd_root = iommu_alloc_page_node(domain->numa_node,
GFP_KERNEL_ACCOUNT);
if (!domain->pgd_root) {
kfree(domain);
return ERR_PTR(-ENOMEM);
}
domain->pscid = ida_alloc_range(&riscv_iommu_pscids, 1,
RISCV_IOMMU_MAX_PSCID, GFP_KERNEL);
if (domain->pscid < 0) {
iommu_free_page(domain->pgd_root);
kfree(domain);
return ERR_PTR(-ENOMEM);
}
/*
* Note: RISC-V Privilege spec mandates that virtual addresses
* need to be sign-extended, so if (VA_BITS - 1) is set, all
* bits >= VA_BITS need to also be set or else we'll get a
* page fault. However the code that creates the mappings
* above us (e.g. iommu_dma_alloc_iova()) won't do that for us
* for now, so we'll end up with invalid virtual addresses
* to map. As a workaround until we get this sorted out
* limit the available virtual addresses to VA_BITS - 1.
*/
va_mask = DMA_BIT_MASK(va_bits - 1);
domain->domain.geometry.aperture_start = 0;
domain->domain.geometry.aperture_end = va_mask;
domain->domain.geometry.force_aperture = true;
domain->domain.pgsize_bitmap = va_mask & (SZ_4K | SZ_2M | SZ_1G | SZ_512G);
domain->domain.ops = &riscv_iommu_paging_domain_ops;
return &domain->domain;
}
static int riscv_iommu_attach_blocking_domain(struct iommu_domain *iommu_domain,
struct device *dev)
{
struct riscv_iommu_device *iommu = dev_to_iommu(dev);
struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
/* Make device context invalid, translation requests will fault w/ #258 */
riscv_iommu_iodir_update(iommu, dev, RISCV_IOMMU_FSC_BARE, 0);
riscv_iommu_bond_unlink(info->domain, dev);
info->domain = NULL;
return 0;
}
static struct iommu_domain riscv_iommu_blocking_domain = {
.type = IOMMU_DOMAIN_BLOCKED,
.ops = &(const struct iommu_domain_ops) {
.attach_dev = riscv_iommu_attach_blocking_domain,
}
};
static int riscv_iommu_attach_identity_domain(struct iommu_domain *iommu_domain,
struct device *dev)
{
struct riscv_iommu_device *iommu = dev_to_iommu(dev);
struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
riscv_iommu_iodir_update(iommu, dev, RISCV_IOMMU_FSC_BARE, RISCV_IOMMU_PC_TA_V);
riscv_iommu_bond_unlink(info->domain, dev);
info->domain = NULL;
return 0;
}
static struct iommu_domain riscv_iommu_identity_domain = {
.type = IOMMU_DOMAIN_IDENTITY,
.ops = &(const struct iommu_domain_ops) {
.attach_dev = riscv_iommu_attach_identity_domain,
}
};
static struct iommu_group *riscv_iommu_device_group(struct device *dev)
{
if (dev_is_pci(dev))
return pci_device_group(dev);
return generic_device_group(dev);
}
static int riscv_iommu_of_xlate(struct device *dev, const struct of_phandle_args *args)
{
return iommu_fwspec_add_ids(dev, args->args, 1);
}
static struct iommu_device *riscv_iommu_probe_device(struct device *dev)
{
struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
struct riscv_iommu_device *iommu;
struct riscv_iommu_info *info;
struct riscv_iommu_dc *dc;
u64 tc;
int i;
if (!fwspec || !fwspec->iommu_fwnode->dev || !fwspec->num_ids)
return ERR_PTR(-ENODEV);
iommu = dev_get_drvdata(fwspec->iommu_fwnode->dev);
if (!iommu)
return ERR_PTR(-ENODEV);
/*
* IOMMU hardware operating in fail-over BARE mode will provide
* identity translation for all connected devices anyway...
*/
if (iommu->ddt_mode <= RISCV_IOMMU_DDTP_IOMMU_MODE_BARE)
return ERR_PTR(-ENODEV);
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return ERR_PTR(-ENOMEM);
/*
* Allocate and pre-configure device context entries in
* the device directory. Do not mark the context valid yet.
*/
tc = 0;
if (iommu->caps & RISCV_IOMMU_CAPABILITIES_AMO_HWAD)
tc |= RISCV_IOMMU_DC_TC_SADE;
for (i = 0; i < fwspec->num_ids; i++) {
dc = riscv_iommu_get_dc(iommu, fwspec->ids[i]);
if (!dc) {
kfree(info);
return ERR_PTR(-ENODEV);
}
if (READ_ONCE(dc->tc) & RISCV_IOMMU_DC_TC_V)
dev_warn(dev, "already attached to IOMMU device directory\n");
WRITE_ONCE(dc->tc, tc);
}
dev_iommu_priv_set(dev, info);
return &iommu->iommu;
}
static void riscv_iommu_release_device(struct device *dev)
{
struct riscv_iommu_info *info = dev_iommu_priv_get(dev);
kfree_rcu_mightsleep(info);
}
static const struct iommu_ops riscv_iommu_ops = {
.pgsize_bitmap = SZ_4K,
.of_xlate = riscv_iommu_of_xlate,
.identity_domain = &riscv_iommu_identity_domain,
.blocked_domain = &riscv_iommu_blocking_domain,
.release_domain = &riscv_iommu_blocking_domain,
.domain_alloc_paging = riscv_iommu_alloc_paging_domain,
.device_group = riscv_iommu_device_group,
.probe_device = riscv_iommu_probe_device,
.release_device = riscv_iommu_release_device,
};
static int riscv_iommu_init_check(struct riscv_iommu_device *iommu)
{
u64 ddtp;
/*
* Make sure the IOMMU is switched off or in pass-through mode during
* regular boot flow and disable translation when we boot into a kexec
* kernel and the previous kernel left them enabled.
*/
ddtp = riscv_iommu_readq(iommu, RISCV_IOMMU_REG_DDTP);
if (ddtp & RISCV_IOMMU_DDTP_BUSY)
return -EBUSY;
if (FIELD_GET(RISCV_IOMMU_DDTP_IOMMU_MODE, ddtp) >
RISCV_IOMMU_DDTP_IOMMU_MODE_BARE) {
if (!is_kdump_kernel())
return -EBUSY;
riscv_iommu_disable(iommu);
}
/* Configure accesses to in-memory data structures for CPU-native byte order. */
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) !=
!!(iommu->fctl & RISCV_IOMMU_FCTL_BE)) {
if (!(iommu->caps & RISCV_IOMMU_CAPABILITIES_END))
return -EINVAL;
riscv_iommu_writel(iommu, RISCV_IOMMU_REG_FCTL,
iommu->fctl ^ RISCV_IOMMU_FCTL_BE);
iommu->fctl = riscv_iommu_readl(iommu, RISCV_IOMMU_REG_FCTL);
if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) !=
!!(iommu->fctl & RISCV_IOMMU_FCTL_BE))
return -EINVAL;
}
/*
* Distribute interrupt vectors, always use first vector for CIV.
* At least one interrupt is required. Read back and verify.
*/
if (!iommu->irqs_count)
return -EINVAL;
iommu->icvec = FIELD_PREP(RISCV_IOMMU_ICVEC_FIV, 1 % iommu->irqs_count) |
FIELD_PREP(RISCV_IOMMU_ICVEC_PIV, 2 % iommu->irqs_count) |
FIELD_PREP(RISCV_IOMMU_ICVEC_PMIV, 3 % iommu->irqs_count);
riscv_iommu_writeq(iommu, RISCV_IOMMU_REG_ICVEC, iommu->icvec);
iommu->icvec = riscv_iommu_readq(iommu, RISCV_IOMMU_REG_ICVEC);
if (max(max(FIELD_GET(RISCV_IOMMU_ICVEC_CIV, iommu->icvec),
FIELD_GET(RISCV_IOMMU_ICVEC_FIV, iommu->icvec)),
max(FIELD_GET(RISCV_IOMMU_ICVEC_PIV, iommu->icvec),
FIELD_GET(RISCV_IOMMU_ICVEC_PMIV, iommu->icvec))) >= iommu->irqs_count)
return -EINVAL;
return 0;
}
void riscv_iommu_remove(struct riscv_iommu_device *iommu)
{
iommu_device_unregister(&iommu->iommu);
iommu_device_sysfs_remove(&iommu->iommu);
riscv_iommu_iodir_set_mode(iommu, RISCV_IOMMU_DDTP_IOMMU_MODE_OFF);
riscv_iommu_queue_disable(&iommu->cmdq);
riscv_iommu_queue_disable(&iommu->fltq);
}
int riscv_iommu_init(struct riscv_iommu_device *iommu)
{
int rc;
RISCV_IOMMU_QUEUE_INIT(&iommu->cmdq, CQ);
RISCV_IOMMU_QUEUE_INIT(&iommu->fltq, FQ);
rc = riscv_iommu_init_check(iommu);
if (rc)
return dev_err_probe(iommu->dev, rc, "unexpected device state\n");
rc = riscv_iommu_iodir_alloc(iommu);
if (rc)
return rc;
rc = riscv_iommu_queue_alloc(iommu, &iommu->cmdq,
sizeof(struct riscv_iommu_command));
if (rc)
return rc;
rc = riscv_iommu_queue_alloc(iommu, &iommu->fltq,
sizeof(struct riscv_iommu_fq_record));
if (rc)
return rc;
rc = riscv_iommu_queue_enable(iommu, &iommu->cmdq, riscv_iommu_cmdq_process);
if (rc)
return rc;
rc = riscv_iommu_queue_enable(iommu, &iommu->fltq, riscv_iommu_fltq_process);
if (rc)
goto err_queue_disable;
rc = riscv_iommu_iodir_set_mode(iommu, RISCV_IOMMU_DDTP_IOMMU_MODE_MAX);
if (rc)
goto err_queue_disable;
rc = iommu_device_sysfs_add(&iommu->iommu, NULL, NULL, "riscv-iommu@%s",
dev_name(iommu->dev));
if (rc) {
dev_err_probe(iommu->dev, rc, "cannot register sysfs interface\n");
goto err_iodir_off;
}
rc = iommu_device_register(&iommu->iommu, &riscv_iommu_ops, iommu->dev);
if (rc) {
dev_err_probe(iommu->dev, rc, "cannot register iommu interface\n");
goto err_remove_sysfs;
}
return 0;
err_remove_sysfs:
iommu_device_sysfs_remove(&iommu->iommu);
err_iodir_off:
riscv_iommu_iodir_set_mode(iommu, RISCV_IOMMU_DDTP_IOMMU_MODE_OFF);
err_queue_disable:
riscv_iommu_queue_disable(&iommu->fltq);
riscv_iommu_queue_disable(&iommu->cmdq);
return rc;
}