695 lines
16 KiB
C
695 lines
16 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2022 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_gt_pagefault.h"
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/circ_buf.h>
|
|
|
|
#include <drm/drm_exec.h>
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/ttm/ttm_execbuf_util.h>
|
|
|
|
#include "abi/guc_actions_abi.h"
|
|
#include "xe_bo.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_tlb_invalidation.h"
|
|
#include "xe_guc.h"
|
|
#include "xe_guc_ct.h"
|
|
#include "xe_migrate.h"
|
|
#include "xe_trace_bo.h"
|
|
#include "xe_vm.h"
|
|
|
|
struct pagefault {
|
|
u64 page_addr;
|
|
u32 asid;
|
|
u16 pdata;
|
|
u8 vfid;
|
|
u8 access_type;
|
|
u8 fault_type;
|
|
u8 fault_level;
|
|
u8 engine_class;
|
|
u8 engine_instance;
|
|
u8 fault_unsuccessful;
|
|
bool trva_fault;
|
|
};
|
|
|
|
enum access_type {
|
|
ACCESS_TYPE_READ = 0,
|
|
ACCESS_TYPE_WRITE = 1,
|
|
ACCESS_TYPE_ATOMIC = 2,
|
|
ACCESS_TYPE_RESERVED = 3,
|
|
};
|
|
|
|
enum fault_type {
|
|
NOT_PRESENT = 0,
|
|
WRITE_ACCESS_VIOLATION = 1,
|
|
ATOMIC_ACCESS_VIOLATION = 2,
|
|
};
|
|
|
|
struct acc {
|
|
u64 va_range_base;
|
|
u32 asid;
|
|
u32 sub_granularity;
|
|
u8 granularity;
|
|
u8 vfid;
|
|
u8 access_type;
|
|
u8 engine_class;
|
|
u8 engine_instance;
|
|
};
|
|
|
|
static bool access_is_atomic(enum access_type access_type)
|
|
{
|
|
return access_type == ACCESS_TYPE_ATOMIC;
|
|
}
|
|
|
|
static bool vma_is_valid(struct xe_tile *tile, struct xe_vma *vma)
|
|
{
|
|
return BIT(tile->id) & vma->tile_present &&
|
|
!(BIT(tile->id) & vma->tile_invalidated);
|
|
}
|
|
|
|
static bool vma_matches(struct xe_vma *vma, u64 page_addr)
|
|
{
|
|
if (page_addr > xe_vma_end(vma) - 1 ||
|
|
page_addr + SZ_4K - 1 < xe_vma_start(vma))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct xe_vma *lookup_vma(struct xe_vm *vm, u64 page_addr)
|
|
{
|
|
struct xe_vma *vma = NULL;
|
|
|
|
if (vm->usm.last_fault_vma) { /* Fast lookup */
|
|
if (vma_matches(vm->usm.last_fault_vma, page_addr))
|
|
vma = vm->usm.last_fault_vma;
|
|
}
|
|
if (!vma)
|
|
vma = xe_vm_find_overlapping_vma(vm, page_addr, SZ_4K);
|
|
|
|
return vma;
|
|
}
|
|
|
|
static int xe_pf_begin(struct drm_exec *exec, struct xe_vma *vma,
|
|
bool atomic, unsigned int id)
|
|
{
|
|
struct xe_bo *bo = xe_vma_bo(vma);
|
|
struct xe_vm *vm = xe_vma_vm(vma);
|
|
int err;
|
|
|
|
err = xe_vm_lock_vma(exec, vma);
|
|
if (err)
|
|
return err;
|
|
|
|
if (atomic && IS_DGFX(vm->xe)) {
|
|
if (xe_vma_is_userptr(vma)) {
|
|
err = -EACCES;
|
|
return err;
|
|
}
|
|
|
|
/* Migrate to VRAM, move should invalidate the VMA first */
|
|
err = xe_bo_migrate(bo, XE_PL_VRAM0 + id);
|
|
if (err)
|
|
return err;
|
|
} else if (bo) {
|
|
/* Create backing store if needed */
|
|
err = xe_bo_validate(bo, vm, true);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int handle_vma_pagefault(struct xe_tile *tile, struct pagefault *pf,
|
|
struct xe_vma *vma)
|
|
{
|
|
struct xe_vm *vm = xe_vma_vm(vma);
|
|
struct drm_exec exec;
|
|
struct dma_fence *fence;
|
|
ktime_t end = 0;
|
|
int err;
|
|
bool atomic;
|
|
|
|
trace_xe_vma_pagefault(vma);
|
|
atomic = access_is_atomic(pf->access_type);
|
|
|
|
/* Check if VMA is valid */
|
|
if (vma_is_valid(tile, vma) && !atomic)
|
|
return 0;
|
|
|
|
retry_userptr:
|
|
if (xe_vma_is_userptr(vma) &&
|
|
xe_vma_userptr_check_repin(to_userptr_vma(vma))) {
|
|
struct xe_userptr_vma *uvma = to_userptr_vma(vma);
|
|
|
|
err = xe_vma_userptr_pin_pages(uvma);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Lock VM and BOs dma-resv */
|
|
drm_exec_init(&exec, 0, 0);
|
|
drm_exec_until_all_locked(&exec) {
|
|
err = xe_pf_begin(&exec, vma, atomic, tile->id);
|
|
drm_exec_retry_on_contention(&exec);
|
|
if (xe_vm_validate_should_retry(&exec, err, &end))
|
|
err = -EAGAIN;
|
|
if (err)
|
|
goto unlock_dma_resv;
|
|
|
|
/* Bind VMA only to the GT that has faulted */
|
|
trace_xe_vma_pf_bind(vma);
|
|
fence = xe_vma_rebind(vm, vma, BIT(tile->id));
|
|
if (IS_ERR(fence)) {
|
|
err = PTR_ERR(fence);
|
|
if (xe_vm_validate_should_retry(&exec, err, &end))
|
|
err = -EAGAIN;
|
|
goto unlock_dma_resv;
|
|
}
|
|
}
|
|
|
|
dma_fence_wait(fence, false);
|
|
dma_fence_put(fence);
|
|
vma->tile_invalidated &= ~BIT(tile->id);
|
|
|
|
unlock_dma_resv:
|
|
drm_exec_fini(&exec);
|
|
if (err == -EAGAIN)
|
|
goto retry_userptr;
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct xe_vm *asid_to_vm(struct xe_device *xe, u32 asid)
|
|
{
|
|
struct xe_vm *vm;
|
|
|
|
down_read(&xe->usm.lock);
|
|
vm = xa_load(&xe->usm.asid_to_vm, asid);
|
|
if (vm && xe_vm_in_fault_mode(vm))
|
|
xe_vm_get(vm);
|
|
else
|
|
vm = ERR_PTR(-EINVAL);
|
|
up_read(&xe->usm.lock);
|
|
|
|
return vm;
|
|
}
|
|
|
|
static int handle_pagefault(struct xe_gt *gt, struct pagefault *pf)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
struct xe_vm *vm;
|
|
struct xe_vma *vma = NULL;
|
|
int err;
|
|
|
|
/* SW isn't expected to handle TRTT faults */
|
|
if (pf->trva_fault)
|
|
return -EFAULT;
|
|
|
|
vm = asid_to_vm(xe, pf->asid);
|
|
if (IS_ERR(vm))
|
|
return PTR_ERR(vm);
|
|
|
|
/*
|
|
* TODO: Change to read lock? Using write lock for simplicity.
|
|
*/
|
|
down_write(&vm->lock);
|
|
|
|
if (xe_vm_is_closed(vm)) {
|
|
err = -ENOENT;
|
|
goto unlock_vm;
|
|
}
|
|
|
|
vma = lookup_vma(vm, pf->page_addr);
|
|
if (!vma) {
|
|
err = -EINVAL;
|
|
goto unlock_vm;
|
|
}
|
|
|
|
err = handle_vma_pagefault(tile, pf, vma);
|
|
|
|
unlock_vm:
|
|
if (!err)
|
|
vm->usm.last_fault_vma = vma;
|
|
up_write(&vm->lock);
|
|
xe_vm_put(vm);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int send_pagefault_reply(struct xe_guc *guc,
|
|
struct xe_guc_pagefault_reply *reply)
|
|
{
|
|
u32 action[] = {
|
|
XE_GUC_ACTION_PAGE_FAULT_RES_DESC,
|
|
reply->dw0,
|
|
reply->dw1,
|
|
};
|
|
|
|
return xe_guc_ct_send(&guc->ct, action, ARRAY_SIZE(action), 0, 0);
|
|
}
|
|
|
|
static void print_pagefault(struct xe_device *xe, struct pagefault *pf)
|
|
{
|
|
drm_dbg(&xe->drm, "\n\tASID: %d\n"
|
|
"\tVFID: %d\n"
|
|
"\tPDATA: 0x%04x\n"
|
|
"\tFaulted Address: 0x%08x%08x\n"
|
|
"\tFaultType: %d\n"
|
|
"\tAccessType: %d\n"
|
|
"\tFaultLevel: %d\n"
|
|
"\tEngineClass: %d\n"
|
|
"\tEngineInstance: %d\n",
|
|
pf->asid, pf->vfid, pf->pdata, upper_32_bits(pf->page_addr),
|
|
lower_32_bits(pf->page_addr),
|
|
pf->fault_type, pf->access_type, pf->fault_level,
|
|
pf->engine_class, pf->engine_instance);
|
|
}
|
|
|
|
#define PF_MSG_LEN_DW 4
|
|
|
|
static bool get_pagefault(struct pf_queue *pf_queue, struct pagefault *pf)
|
|
{
|
|
const struct xe_guc_pagefault_desc *desc;
|
|
bool ret = false;
|
|
|
|
spin_lock_irq(&pf_queue->lock);
|
|
if (pf_queue->tail != pf_queue->head) {
|
|
desc = (const struct xe_guc_pagefault_desc *)
|
|
(pf_queue->data + pf_queue->tail);
|
|
|
|
pf->fault_level = FIELD_GET(PFD_FAULT_LEVEL, desc->dw0);
|
|
pf->trva_fault = FIELD_GET(XE2_PFD_TRVA_FAULT, desc->dw0);
|
|
pf->engine_class = FIELD_GET(PFD_ENG_CLASS, desc->dw0);
|
|
pf->engine_instance = FIELD_GET(PFD_ENG_INSTANCE, desc->dw0);
|
|
pf->pdata = FIELD_GET(PFD_PDATA_HI, desc->dw1) <<
|
|
PFD_PDATA_HI_SHIFT;
|
|
pf->pdata |= FIELD_GET(PFD_PDATA_LO, desc->dw0);
|
|
pf->asid = FIELD_GET(PFD_ASID, desc->dw1);
|
|
pf->vfid = FIELD_GET(PFD_VFID, desc->dw2);
|
|
pf->access_type = FIELD_GET(PFD_ACCESS_TYPE, desc->dw2);
|
|
pf->fault_type = FIELD_GET(PFD_FAULT_TYPE, desc->dw2);
|
|
pf->page_addr = (u64)(FIELD_GET(PFD_VIRTUAL_ADDR_HI, desc->dw3)) <<
|
|
PFD_VIRTUAL_ADDR_HI_SHIFT;
|
|
pf->page_addr |= FIELD_GET(PFD_VIRTUAL_ADDR_LO, desc->dw2) <<
|
|
PFD_VIRTUAL_ADDR_LO_SHIFT;
|
|
|
|
pf_queue->tail = (pf_queue->tail + PF_MSG_LEN_DW) %
|
|
pf_queue->num_dw;
|
|
ret = true;
|
|
}
|
|
spin_unlock_irq(&pf_queue->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool pf_queue_full(struct pf_queue *pf_queue)
|
|
{
|
|
lockdep_assert_held(&pf_queue->lock);
|
|
|
|
return CIRC_SPACE(pf_queue->head, pf_queue->tail,
|
|
pf_queue->num_dw) <=
|
|
PF_MSG_LEN_DW;
|
|
}
|
|
|
|
int xe_guc_pagefault_handler(struct xe_guc *guc, u32 *msg, u32 len)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct pf_queue *pf_queue;
|
|
unsigned long flags;
|
|
u32 asid;
|
|
bool full;
|
|
|
|
if (unlikely(len != PF_MSG_LEN_DW))
|
|
return -EPROTO;
|
|
|
|
asid = FIELD_GET(PFD_ASID, msg[1]);
|
|
pf_queue = gt->usm.pf_queue + (asid % NUM_PF_QUEUE);
|
|
|
|
/*
|
|
* The below logic doesn't work unless PF_QUEUE_NUM_DW % PF_MSG_LEN_DW == 0
|
|
*/
|
|
xe_gt_assert(gt, !(pf_queue->num_dw % PF_MSG_LEN_DW));
|
|
|
|
spin_lock_irqsave(&pf_queue->lock, flags);
|
|
full = pf_queue_full(pf_queue);
|
|
if (!full) {
|
|
memcpy(pf_queue->data + pf_queue->head, msg, len * sizeof(u32));
|
|
pf_queue->head = (pf_queue->head + len) %
|
|
pf_queue->num_dw;
|
|
queue_work(gt->usm.pf_wq, &pf_queue->worker);
|
|
} else {
|
|
drm_warn(&xe->drm, "PF Queue full, shouldn't be possible");
|
|
}
|
|
spin_unlock_irqrestore(&pf_queue->lock, flags);
|
|
|
|
return full ? -ENOSPC : 0;
|
|
}
|
|
|
|
#define USM_QUEUE_MAX_RUNTIME_MS 20
|
|
|
|
static void pf_queue_work_func(struct work_struct *w)
|
|
{
|
|
struct pf_queue *pf_queue = container_of(w, struct pf_queue, worker);
|
|
struct xe_gt *gt = pf_queue->gt;
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_guc_pagefault_reply reply = {};
|
|
struct pagefault pf = {};
|
|
unsigned long threshold;
|
|
int ret;
|
|
|
|
threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
|
|
|
|
while (get_pagefault(pf_queue, &pf)) {
|
|
ret = handle_pagefault(gt, &pf);
|
|
if (unlikely(ret)) {
|
|
print_pagefault(xe, &pf);
|
|
pf.fault_unsuccessful = 1;
|
|
drm_dbg(&xe->drm, "Fault response: Unsuccessful %d\n", ret);
|
|
}
|
|
|
|
reply.dw0 = FIELD_PREP(PFR_VALID, 1) |
|
|
FIELD_PREP(PFR_SUCCESS, pf.fault_unsuccessful) |
|
|
FIELD_PREP(PFR_REPLY, PFR_ACCESS) |
|
|
FIELD_PREP(PFR_DESC_TYPE, FAULT_RESPONSE_DESC) |
|
|
FIELD_PREP(PFR_ASID, pf.asid);
|
|
|
|
reply.dw1 = FIELD_PREP(PFR_VFID, pf.vfid) |
|
|
FIELD_PREP(PFR_ENG_INSTANCE, pf.engine_instance) |
|
|
FIELD_PREP(PFR_ENG_CLASS, pf.engine_class) |
|
|
FIELD_PREP(PFR_PDATA, pf.pdata);
|
|
|
|
send_pagefault_reply(>->uc.guc, &reply);
|
|
|
|
if (time_after(jiffies, threshold) &&
|
|
pf_queue->tail != pf_queue->head) {
|
|
queue_work(gt->usm.pf_wq, w);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void acc_queue_work_func(struct work_struct *w);
|
|
|
|
static void pagefault_fini(void *arg)
|
|
{
|
|
struct xe_gt *gt = arg;
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
|
|
if (!xe->info.has_usm)
|
|
return;
|
|
|
|
destroy_workqueue(gt->usm.acc_wq);
|
|
destroy_workqueue(gt->usm.pf_wq);
|
|
}
|
|
|
|
static int xe_alloc_pf_queue(struct xe_gt *gt, struct pf_queue *pf_queue)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
xe_dss_mask_t all_dss;
|
|
int num_dss, num_eus;
|
|
|
|
bitmap_or(all_dss, gt->fuse_topo.g_dss_mask, gt->fuse_topo.c_dss_mask,
|
|
XE_MAX_DSS_FUSE_BITS);
|
|
|
|
num_dss = bitmap_weight(all_dss, XE_MAX_DSS_FUSE_BITS);
|
|
num_eus = bitmap_weight(gt->fuse_topo.eu_mask_per_dss,
|
|
XE_MAX_EU_FUSE_BITS) * num_dss;
|
|
|
|
/* user can issue separate page faults per EU and per CS */
|
|
pf_queue->num_dw =
|
|
(num_eus + XE_NUM_HW_ENGINES) * PF_MSG_LEN_DW;
|
|
|
|
pf_queue->gt = gt;
|
|
pf_queue->data = devm_kcalloc(xe->drm.dev, pf_queue->num_dw,
|
|
sizeof(u32), GFP_KERNEL);
|
|
if (!pf_queue->data)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&pf_queue->lock);
|
|
INIT_WORK(&pf_queue->worker, pf_queue_work_func);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_gt_pagefault_init(struct xe_gt *gt)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
int i, ret = 0;
|
|
|
|
if (!xe->info.has_usm)
|
|
return 0;
|
|
|
|
for (i = 0; i < NUM_PF_QUEUE; ++i) {
|
|
ret = xe_alloc_pf_queue(gt, >->usm.pf_queue[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
for (i = 0; i < NUM_ACC_QUEUE; ++i) {
|
|
gt->usm.acc_queue[i].gt = gt;
|
|
spin_lock_init(>->usm.acc_queue[i].lock);
|
|
INIT_WORK(>->usm.acc_queue[i].worker, acc_queue_work_func);
|
|
}
|
|
|
|
gt->usm.pf_wq = alloc_workqueue("xe_gt_page_fault_work_queue",
|
|
WQ_UNBOUND | WQ_HIGHPRI, NUM_PF_QUEUE);
|
|
if (!gt->usm.pf_wq)
|
|
return -ENOMEM;
|
|
|
|
gt->usm.acc_wq = alloc_workqueue("xe_gt_access_counter_work_queue",
|
|
WQ_UNBOUND | WQ_HIGHPRI,
|
|
NUM_ACC_QUEUE);
|
|
if (!gt->usm.acc_wq) {
|
|
destroy_workqueue(gt->usm.pf_wq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return devm_add_action_or_reset(xe->drm.dev, pagefault_fini, gt);
|
|
}
|
|
|
|
void xe_gt_pagefault_reset(struct xe_gt *gt)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
int i;
|
|
|
|
if (!xe->info.has_usm)
|
|
return;
|
|
|
|
for (i = 0; i < NUM_PF_QUEUE; ++i) {
|
|
spin_lock_irq(>->usm.pf_queue[i].lock);
|
|
gt->usm.pf_queue[i].head = 0;
|
|
gt->usm.pf_queue[i].tail = 0;
|
|
spin_unlock_irq(>->usm.pf_queue[i].lock);
|
|
}
|
|
|
|
for (i = 0; i < NUM_ACC_QUEUE; ++i) {
|
|
spin_lock(>->usm.acc_queue[i].lock);
|
|
gt->usm.acc_queue[i].head = 0;
|
|
gt->usm.acc_queue[i].tail = 0;
|
|
spin_unlock(>->usm.acc_queue[i].lock);
|
|
}
|
|
}
|
|
|
|
static int granularity_in_byte(int val)
|
|
{
|
|
switch (val) {
|
|
case 0:
|
|
return SZ_128K;
|
|
case 1:
|
|
return SZ_2M;
|
|
case 2:
|
|
return SZ_16M;
|
|
case 3:
|
|
return SZ_64M;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int sub_granularity_in_byte(int val)
|
|
{
|
|
return (granularity_in_byte(val) / 32);
|
|
}
|
|
|
|
static void print_acc(struct xe_device *xe, struct acc *acc)
|
|
{
|
|
drm_warn(&xe->drm, "Access counter request:\n"
|
|
"\tType: %s\n"
|
|
"\tASID: %d\n"
|
|
"\tVFID: %d\n"
|
|
"\tEngine: %d:%d\n"
|
|
"\tGranularity: 0x%x KB Region/ %d KB sub-granularity\n"
|
|
"\tSub_Granularity Vector: 0x%08x\n"
|
|
"\tVA Range base: 0x%016llx\n",
|
|
acc->access_type ? "AC_NTFY_VAL" : "AC_TRIG_VAL",
|
|
acc->asid, acc->vfid, acc->engine_class, acc->engine_instance,
|
|
granularity_in_byte(acc->granularity) / SZ_1K,
|
|
sub_granularity_in_byte(acc->granularity) / SZ_1K,
|
|
acc->sub_granularity, acc->va_range_base);
|
|
}
|
|
|
|
static struct xe_vma *get_acc_vma(struct xe_vm *vm, struct acc *acc)
|
|
{
|
|
u64 page_va = acc->va_range_base + (ffs(acc->sub_granularity) - 1) *
|
|
sub_granularity_in_byte(acc->granularity);
|
|
|
|
return xe_vm_find_overlapping_vma(vm, page_va, SZ_4K);
|
|
}
|
|
|
|
static int handle_acc(struct xe_gt *gt, struct acc *acc)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_tile *tile = gt_to_tile(gt);
|
|
struct drm_exec exec;
|
|
struct xe_vm *vm;
|
|
struct xe_vma *vma;
|
|
int ret = 0;
|
|
|
|
/* We only support ACC_TRIGGER at the moment */
|
|
if (acc->access_type != ACC_TRIGGER)
|
|
return -EINVAL;
|
|
|
|
vm = asid_to_vm(xe, acc->asid);
|
|
if (IS_ERR(vm))
|
|
return PTR_ERR(vm);
|
|
|
|
down_read(&vm->lock);
|
|
|
|
/* Lookup VMA */
|
|
vma = get_acc_vma(vm, acc);
|
|
if (!vma) {
|
|
ret = -EINVAL;
|
|
goto unlock_vm;
|
|
}
|
|
|
|
trace_xe_vma_acc(vma);
|
|
|
|
/* Userptr or null can't be migrated, nothing to do */
|
|
if (xe_vma_has_no_bo(vma))
|
|
goto unlock_vm;
|
|
|
|
/* Lock VM and BOs dma-resv */
|
|
drm_exec_init(&exec, 0, 0);
|
|
drm_exec_until_all_locked(&exec) {
|
|
ret = xe_pf_begin(&exec, vma, true, tile->id);
|
|
drm_exec_retry_on_contention(&exec);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
drm_exec_fini(&exec);
|
|
unlock_vm:
|
|
up_read(&vm->lock);
|
|
xe_vm_put(vm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define make_u64(hi__, low__) ((u64)(hi__) << 32 | (u64)(low__))
|
|
|
|
#define ACC_MSG_LEN_DW 4
|
|
|
|
static bool get_acc(struct acc_queue *acc_queue, struct acc *acc)
|
|
{
|
|
const struct xe_guc_acc_desc *desc;
|
|
bool ret = false;
|
|
|
|
spin_lock(&acc_queue->lock);
|
|
if (acc_queue->tail != acc_queue->head) {
|
|
desc = (const struct xe_guc_acc_desc *)
|
|
(acc_queue->data + acc_queue->tail);
|
|
|
|
acc->granularity = FIELD_GET(ACC_GRANULARITY, desc->dw2);
|
|
acc->sub_granularity = FIELD_GET(ACC_SUBG_HI, desc->dw1) << 31 |
|
|
FIELD_GET(ACC_SUBG_LO, desc->dw0);
|
|
acc->engine_class = FIELD_GET(ACC_ENG_CLASS, desc->dw1);
|
|
acc->engine_instance = FIELD_GET(ACC_ENG_INSTANCE, desc->dw1);
|
|
acc->asid = FIELD_GET(ACC_ASID, desc->dw1);
|
|
acc->vfid = FIELD_GET(ACC_VFID, desc->dw2);
|
|
acc->access_type = FIELD_GET(ACC_TYPE, desc->dw0);
|
|
acc->va_range_base = make_u64(desc->dw3 & ACC_VIRTUAL_ADDR_RANGE_HI,
|
|
desc->dw2 & ACC_VIRTUAL_ADDR_RANGE_LO);
|
|
|
|
acc_queue->tail = (acc_queue->tail + ACC_MSG_LEN_DW) %
|
|
ACC_QUEUE_NUM_DW;
|
|
ret = true;
|
|
}
|
|
spin_unlock(&acc_queue->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void acc_queue_work_func(struct work_struct *w)
|
|
{
|
|
struct acc_queue *acc_queue = container_of(w, struct acc_queue, worker);
|
|
struct xe_gt *gt = acc_queue->gt;
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct acc acc = {};
|
|
unsigned long threshold;
|
|
int ret;
|
|
|
|
threshold = jiffies + msecs_to_jiffies(USM_QUEUE_MAX_RUNTIME_MS);
|
|
|
|
while (get_acc(acc_queue, &acc)) {
|
|
ret = handle_acc(gt, &acc);
|
|
if (unlikely(ret)) {
|
|
print_acc(xe, &acc);
|
|
drm_warn(&xe->drm, "ACC: Unsuccessful %d\n", ret);
|
|
}
|
|
|
|
if (time_after(jiffies, threshold) &&
|
|
acc_queue->tail != acc_queue->head) {
|
|
queue_work(gt->usm.acc_wq, w);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool acc_queue_full(struct acc_queue *acc_queue)
|
|
{
|
|
lockdep_assert_held(&acc_queue->lock);
|
|
|
|
return CIRC_SPACE(acc_queue->head, acc_queue->tail, ACC_QUEUE_NUM_DW) <=
|
|
ACC_MSG_LEN_DW;
|
|
}
|
|
|
|
int xe_guc_access_counter_notify_handler(struct xe_guc *guc, u32 *msg, u32 len)
|
|
{
|
|
struct xe_gt *gt = guc_to_gt(guc);
|
|
struct acc_queue *acc_queue;
|
|
u32 asid;
|
|
bool full;
|
|
|
|
/*
|
|
* The below logic doesn't work unless ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW == 0
|
|
*/
|
|
BUILD_BUG_ON(ACC_QUEUE_NUM_DW % ACC_MSG_LEN_DW);
|
|
|
|
if (unlikely(len != ACC_MSG_LEN_DW))
|
|
return -EPROTO;
|
|
|
|
asid = FIELD_GET(ACC_ASID, msg[1]);
|
|
acc_queue = >->usm.acc_queue[asid % NUM_ACC_QUEUE];
|
|
|
|
spin_lock(&acc_queue->lock);
|
|
full = acc_queue_full(acc_queue);
|
|
if (!full) {
|
|
memcpy(acc_queue->data + acc_queue->head, msg,
|
|
len * sizeof(u32));
|
|
acc_queue->head = (acc_queue->head + len) % ACC_QUEUE_NUM_DW;
|
|
queue_work(gt->usm.acc_wq, &acc_queue->worker);
|
|
} else {
|
|
drm_warn(>_to_xe(gt)->drm, "ACC Queue full, dropping ACC");
|
|
}
|
|
spin_unlock(&acc_queue->lock);
|
|
|
|
return full ? -ENOSPC : 0;
|
|
}
|