2450 lines
61 KiB
C
2450 lines
61 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2021 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_bo.h"
|
|
|
|
#include <linux/dma-buf.h>
|
|
|
|
#include <drm/drm_drv.h>
|
|
#include <drm/drm_gem_ttm_helper.h>
|
|
#include <drm/drm_managed.h>
|
|
#include <drm/ttm/ttm_device.h>
|
|
#include <drm/ttm/ttm_placement.h>
|
|
#include <drm/ttm/ttm_tt.h>
|
|
#include <uapi/drm/xe_drm.h>
|
|
|
|
#include "xe_device.h"
|
|
#include "xe_dma_buf.h"
|
|
#include "xe_drm_client.h"
|
|
#include "xe_ggtt.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_map.h"
|
|
#include "xe_migrate.h"
|
|
#include "xe_pm.h"
|
|
#include "xe_preempt_fence.h"
|
|
#include "xe_res_cursor.h"
|
|
#include "xe_trace_bo.h"
|
|
#include "xe_ttm_stolen_mgr.h"
|
|
#include "xe_vm.h"
|
|
|
|
const char *const xe_mem_type_to_name[TTM_NUM_MEM_TYPES] = {
|
|
[XE_PL_SYSTEM] = "system",
|
|
[XE_PL_TT] = "gtt",
|
|
[XE_PL_VRAM0] = "vram0",
|
|
[XE_PL_VRAM1] = "vram1",
|
|
[XE_PL_STOLEN] = "stolen"
|
|
};
|
|
|
|
static const struct ttm_place sys_placement_flags = {
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = XE_PL_SYSTEM,
|
|
.flags = 0,
|
|
};
|
|
|
|
static struct ttm_placement sys_placement = {
|
|
.num_placement = 1,
|
|
.placement = &sys_placement_flags,
|
|
};
|
|
|
|
static const struct ttm_place tt_placement_flags[] = {
|
|
{
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = XE_PL_TT,
|
|
.flags = TTM_PL_FLAG_DESIRED,
|
|
},
|
|
{
|
|
.fpfn = 0,
|
|
.lpfn = 0,
|
|
.mem_type = XE_PL_SYSTEM,
|
|
.flags = TTM_PL_FLAG_FALLBACK,
|
|
}
|
|
};
|
|
|
|
static struct ttm_placement tt_placement = {
|
|
.num_placement = 2,
|
|
.placement = tt_placement_flags,
|
|
};
|
|
|
|
bool mem_type_is_vram(u32 mem_type)
|
|
{
|
|
return mem_type >= XE_PL_VRAM0 && mem_type != XE_PL_STOLEN;
|
|
}
|
|
|
|
static bool resource_is_stolen_vram(struct xe_device *xe, struct ttm_resource *res)
|
|
{
|
|
return res->mem_type == XE_PL_STOLEN && IS_DGFX(xe);
|
|
}
|
|
|
|
static bool resource_is_vram(struct ttm_resource *res)
|
|
{
|
|
return mem_type_is_vram(res->mem_type);
|
|
}
|
|
|
|
bool xe_bo_is_vram(struct xe_bo *bo)
|
|
{
|
|
return resource_is_vram(bo->ttm.resource) ||
|
|
resource_is_stolen_vram(xe_bo_device(bo), bo->ttm.resource);
|
|
}
|
|
|
|
bool xe_bo_is_stolen(struct xe_bo *bo)
|
|
{
|
|
return bo->ttm.resource->mem_type == XE_PL_STOLEN;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_has_single_placement - check if BO is placed only in one memory location
|
|
* @bo: The BO
|
|
*
|
|
* This function checks whether a given BO is placed in only one memory location.
|
|
*
|
|
* Returns: true if the BO is placed in a single memory location, false otherwise.
|
|
*
|
|
*/
|
|
bool xe_bo_has_single_placement(struct xe_bo *bo)
|
|
{
|
|
return bo->placement.num_placement == 1;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_is_stolen_devmem - check if BO is of stolen type accessed via PCI BAR
|
|
* @bo: The BO
|
|
*
|
|
* The stolen memory is accessed through the PCI BAR for both DGFX and some
|
|
* integrated platforms that have a dedicated bit in the PTE for devmem (DM).
|
|
*
|
|
* Returns: true if it's stolen memory accessed via PCI BAR, false otherwise.
|
|
*/
|
|
bool xe_bo_is_stolen_devmem(struct xe_bo *bo)
|
|
{
|
|
return xe_bo_is_stolen(bo) &&
|
|
GRAPHICS_VERx100(xe_bo_device(bo)) >= 1270;
|
|
}
|
|
|
|
static bool xe_bo_is_user(struct xe_bo *bo)
|
|
{
|
|
return bo->flags & XE_BO_FLAG_USER;
|
|
}
|
|
|
|
static struct xe_migrate *
|
|
mem_type_to_migrate(struct xe_device *xe, u32 mem_type)
|
|
{
|
|
struct xe_tile *tile;
|
|
|
|
xe_assert(xe, mem_type == XE_PL_STOLEN || mem_type_is_vram(mem_type));
|
|
tile = &xe->tiles[mem_type == XE_PL_STOLEN ? 0 : (mem_type - XE_PL_VRAM0)];
|
|
return tile->migrate;
|
|
}
|
|
|
|
static struct xe_mem_region *res_to_mem_region(struct ttm_resource *res)
|
|
{
|
|
struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
|
|
struct ttm_resource_manager *mgr;
|
|
|
|
xe_assert(xe, resource_is_vram(res));
|
|
mgr = ttm_manager_type(&xe->ttm, res->mem_type);
|
|
return to_xe_ttm_vram_mgr(mgr)->vram;
|
|
}
|
|
|
|
static void try_add_system(struct xe_device *xe, struct xe_bo *bo,
|
|
u32 bo_flags, u32 *c)
|
|
{
|
|
if (bo_flags & XE_BO_FLAG_SYSTEM) {
|
|
xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
|
|
|
|
bo->placements[*c] = (struct ttm_place) {
|
|
.mem_type = XE_PL_TT,
|
|
};
|
|
*c += 1;
|
|
}
|
|
}
|
|
|
|
static void add_vram(struct xe_device *xe, struct xe_bo *bo,
|
|
struct ttm_place *places, u32 bo_flags, u32 mem_type, u32 *c)
|
|
{
|
|
struct ttm_place place = { .mem_type = mem_type };
|
|
struct xe_mem_region *vram;
|
|
u64 io_size;
|
|
|
|
xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
|
|
|
|
vram = to_xe_ttm_vram_mgr(ttm_manager_type(&xe->ttm, mem_type))->vram;
|
|
xe_assert(xe, vram && vram->usable_size);
|
|
io_size = vram->io_size;
|
|
|
|
/*
|
|
* For eviction / restore on suspend / resume objects
|
|
* pinned in VRAM must be contiguous
|
|
*/
|
|
if (bo_flags & (XE_BO_FLAG_PINNED |
|
|
XE_BO_FLAG_GGTT))
|
|
place.flags |= TTM_PL_FLAG_CONTIGUOUS;
|
|
|
|
if (io_size < vram->usable_size) {
|
|
if (bo_flags & XE_BO_FLAG_NEEDS_CPU_ACCESS) {
|
|
place.fpfn = 0;
|
|
place.lpfn = io_size >> PAGE_SHIFT;
|
|
} else {
|
|
place.flags |= TTM_PL_FLAG_TOPDOWN;
|
|
}
|
|
}
|
|
places[*c] = place;
|
|
*c += 1;
|
|
}
|
|
|
|
static void try_add_vram(struct xe_device *xe, struct xe_bo *bo,
|
|
u32 bo_flags, u32 *c)
|
|
{
|
|
if (bo_flags & XE_BO_FLAG_VRAM0)
|
|
add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM0, c);
|
|
if (bo_flags & XE_BO_FLAG_VRAM1)
|
|
add_vram(xe, bo, bo->placements, bo_flags, XE_PL_VRAM1, c);
|
|
}
|
|
|
|
static void try_add_stolen(struct xe_device *xe, struct xe_bo *bo,
|
|
u32 bo_flags, u32 *c)
|
|
{
|
|
if (bo_flags & XE_BO_FLAG_STOLEN) {
|
|
xe_assert(xe, *c < ARRAY_SIZE(bo->placements));
|
|
|
|
bo->placements[*c] = (struct ttm_place) {
|
|
.mem_type = XE_PL_STOLEN,
|
|
.flags = bo_flags & (XE_BO_FLAG_PINNED |
|
|
XE_BO_FLAG_GGTT) ?
|
|
TTM_PL_FLAG_CONTIGUOUS : 0,
|
|
};
|
|
*c += 1;
|
|
}
|
|
}
|
|
|
|
static int __xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
|
|
u32 bo_flags)
|
|
{
|
|
u32 c = 0;
|
|
|
|
try_add_vram(xe, bo, bo_flags, &c);
|
|
try_add_system(xe, bo, bo_flags, &c);
|
|
try_add_stolen(xe, bo, bo_flags, &c);
|
|
|
|
if (!c)
|
|
return -EINVAL;
|
|
|
|
bo->placement = (struct ttm_placement) {
|
|
.num_placement = c,
|
|
.placement = bo->placements,
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_bo_placement_for_flags(struct xe_device *xe, struct xe_bo *bo,
|
|
u32 bo_flags)
|
|
{
|
|
xe_bo_assert_held(bo);
|
|
return __xe_bo_placement_for_flags(xe, bo, bo_flags);
|
|
}
|
|
|
|
static void xe_evict_flags(struct ttm_buffer_object *tbo,
|
|
struct ttm_placement *placement)
|
|
{
|
|
if (!xe_bo_is_xe_bo(tbo)) {
|
|
/* Don't handle scatter gather BOs */
|
|
if (tbo->type == ttm_bo_type_sg) {
|
|
placement->num_placement = 0;
|
|
return;
|
|
}
|
|
|
|
*placement = sys_placement;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* For xe, sg bos that are evicted to system just triggers a
|
|
* rebind of the sg list upon subsequent validation to XE_PL_TT.
|
|
*/
|
|
switch (tbo->resource->mem_type) {
|
|
case XE_PL_VRAM0:
|
|
case XE_PL_VRAM1:
|
|
case XE_PL_STOLEN:
|
|
*placement = tt_placement;
|
|
break;
|
|
case XE_PL_TT:
|
|
default:
|
|
*placement = sys_placement;
|
|
break;
|
|
}
|
|
}
|
|
|
|
struct xe_ttm_tt {
|
|
struct ttm_tt ttm;
|
|
struct device *dev;
|
|
struct sg_table sgt;
|
|
struct sg_table *sg;
|
|
/** @purgeable: Whether the content of the pages of @ttm is purgeable. */
|
|
bool purgeable;
|
|
};
|
|
|
|
static int xe_tt_map_sg(struct ttm_tt *tt)
|
|
{
|
|
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
|
|
unsigned long num_pages = tt->num_pages;
|
|
int ret;
|
|
|
|
XE_WARN_ON(tt->page_flags & TTM_TT_FLAG_EXTERNAL);
|
|
|
|
if (xe_tt->sg)
|
|
return 0;
|
|
|
|
ret = sg_alloc_table_from_pages_segment(&xe_tt->sgt, tt->pages,
|
|
num_pages, 0,
|
|
(u64)num_pages << PAGE_SHIFT,
|
|
xe_sg_segment_size(xe_tt->dev),
|
|
GFP_KERNEL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
xe_tt->sg = &xe_tt->sgt;
|
|
ret = dma_map_sgtable(xe_tt->dev, xe_tt->sg, DMA_BIDIRECTIONAL,
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
if (ret) {
|
|
sg_free_table(xe_tt->sg);
|
|
xe_tt->sg = NULL;
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void xe_tt_unmap_sg(struct ttm_tt *tt)
|
|
{
|
|
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
|
|
|
|
if (xe_tt->sg) {
|
|
dma_unmap_sgtable(xe_tt->dev, xe_tt->sg,
|
|
DMA_BIDIRECTIONAL, 0);
|
|
sg_free_table(xe_tt->sg);
|
|
xe_tt->sg = NULL;
|
|
}
|
|
}
|
|
|
|
struct sg_table *xe_bo_sg(struct xe_bo *bo)
|
|
{
|
|
struct ttm_tt *tt = bo->ttm.ttm;
|
|
struct xe_ttm_tt *xe_tt = container_of(tt, struct xe_ttm_tt, ttm);
|
|
|
|
return xe_tt->sg;
|
|
}
|
|
|
|
static struct ttm_tt *xe_ttm_tt_create(struct ttm_buffer_object *ttm_bo,
|
|
u32 page_flags)
|
|
{
|
|
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
struct xe_ttm_tt *tt;
|
|
unsigned long extra_pages;
|
|
enum ttm_caching caching = ttm_cached;
|
|
int err;
|
|
|
|
tt = kzalloc(sizeof(*tt), GFP_KERNEL);
|
|
if (!tt)
|
|
return NULL;
|
|
|
|
tt->dev = xe->drm.dev;
|
|
|
|
extra_pages = 0;
|
|
if (xe_bo_needs_ccs_pages(bo))
|
|
extra_pages = DIV_ROUND_UP(xe_device_ccs_bytes(xe, bo->size),
|
|
PAGE_SIZE);
|
|
|
|
/*
|
|
* DGFX system memory is always WB / ttm_cached, since
|
|
* other caching modes are only supported on x86. DGFX
|
|
* GPU system memory accesses are always coherent with the
|
|
* CPU.
|
|
*/
|
|
if (!IS_DGFX(xe)) {
|
|
switch (bo->cpu_caching) {
|
|
case DRM_XE_GEM_CPU_CACHING_WC:
|
|
caching = ttm_write_combined;
|
|
break;
|
|
default:
|
|
caching = ttm_cached;
|
|
break;
|
|
}
|
|
|
|
WARN_ON((bo->flags & XE_BO_FLAG_USER) && !bo->cpu_caching);
|
|
|
|
/*
|
|
* Display scanout is always non-coherent with the CPU cache.
|
|
*
|
|
* For Xe_LPG and beyond, PPGTT PTE lookups are also
|
|
* non-coherent and require a CPU:WC mapping.
|
|
*/
|
|
if ((!bo->cpu_caching && bo->flags & XE_BO_FLAG_SCANOUT) ||
|
|
(xe->info.graphics_verx100 >= 1270 &&
|
|
bo->flags & XE_BO_FLAG_PAGETABLE))
|
|
caching = ttm_write_combined;
|
|
}
|
|
|
|
if (bo->flags & XE_BO_FLAG_NEEDS_UC) {
|
|
/*
|
|
* Valid only for internally-created buffers only, for
|
|
* which cpu_caching is never initialized.
|
|
*/
|
|
xe_assert(xe, bo->cpu_caching == 0);
|
|
caching = ttm_uncached;
|
|
}
|
|
|
|
err = ttm_tt_init(&tt->ttm, &bo->ttm, page_flags, caching, extra_pages);
|
|
if (err) {
|
|
kfree(tt);
|
|
return NULL;
|
|
}
|
|
|
|
return &tt->ttm;
|
|
}
|
|
|
|
static int xe_ttm_tt_populate(struct ttm_device *ttm_dev, struct ttm_tt *tt,
|
|
struct ttm_operation_ctx *ctx)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* dma-bufs are not populated with pages, and the dma-
|
|
* addresses are set up when moved to XE_PL_TT.
|
|
*/
|
|
if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
|
|
return 0;
|
|
|
|
err = ttm_pool_alloc(&ttm_dev->pool, tt, ctx);
|
|
if (err)
|
|
return err;
|
|
|
|
return err;
|
|
}
|
|
|
|
static void xe_ttm_tt_unpopulate(struct ttm_device *ttm_dev, struct ttm_tt *tt)
|
|
{
|
|
if (tt->page_flags & TTM_TT_FLAG_EXTERNAL)
|
|
return;
|
|
|
|
xe_tt_unmap_sg(tt);
|
|
|
|
return ttm_pool_free(&ttm_dev->pool, tt);
|
|
}
|
|
|
|
static void xe_ttm_tt_destroy(struct ttm_device *ttm_dev, struct ttm_tt *tt)
|
|
{
|
|
ttm_tt_fini(tt);
|
|
kfree(tt);
|
|
}
|
|
|
|
static int xe_ttm_io_mem_reserve(struct ttm_device *bdev,
|
|
struct ttm_resource *mem)
|
|
{
|
|
struct xe_device *xe = ttm_to_xe_device(bdev);
|
|
|
|
switch (mem->mem_type) {
|
|
case XE_PL_SYSTEM:
|
|
case XE_PL_TT:
|
|
return 0;
|
|
case XE_PL_VRAM0:
|
|
case XE_PL_VRAM1: {
|
|
struct xe_ttm_vram_mgr_resource *vres =
|
|
to_xe_ttm_vram_mgr_resource(mem);
|
|
struct xe_mem_region *vram = res_to_mem_region(mem);
|
|
|
|
if (vres->used_visible_size < mem->size)
|
|
return -EINVAL;
|
|
|
|
mem->bus.offset = mem->start << PAGE_SHIFT;
|
|
|
|
if (vram->mapping &&
|
|
mem->placement & TTM_PL_FLAG_CONTIGUOUS)
|
|
mem->bus.addr = (u8 __force *)vram->mapping +
|
|
mem->bus.offset;
|
|
|
|
mem->bus.offset += vram->io_start;
|
|
mem->bus.is_iomem = true;
|
|
|
|
#if !IS_ENABLED(CONFIG_X86)
|
|
mem->bus.caching = ttm_write_combined;
|
|
#endif
|
|
return 0;
|
|
} case XE_PL_STOLEN:
|
|
return xe_ttm_stolen_io_mem_reserve(xe, mem);
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
static int xe_bo_trigger_rebind(struct xe_device *xe, struct xe_bo *bo,
|
|
const struct ttm_operation_ctx *ctx)
|
|
{
|
|
struct dma_resv_iter cursor;
|
|
struct dma_fence *fence;
|
|
struct drm_gem_object *obj = &bo->ttm.base;
|
|
struct drm_gpuvm_bo *vm_bo;
|
|
bool idle = false;
|
|
int ret = 0;
|
|
|
|
dma_resv_assert_held(bo->ttm.base.resv);
|
|
|
|
if (!list_empty(&bo->ttm.base.gpuva.list)) {
|
|
dma_resv_iter_begin(&cursor, bo->ttm.base.resv,
|
|
DMA_RESV_USAGE_BOOKKEEP);
|
|
dma_resv_for_each_fence_unlocked(&cursor, fence)
|
|
dma_fence_enable_sw_signaling(fence);
|
|
dma_resv_iter_end(&cursor);
|
|
}
|
|
|
|
drm_gem_for_each_gpuvm_bo(vm_bo, obj) {
|
|
struct xe_vm *vm = gpuvm_to_vm(vm_bo->vm);
|
|
struct drm_gpuva *gpuva;
|
|
|
|
if (!xe_vm_in_fault_mode(vm)) {
|
|
drm_gpuvm_bo_evict(vm_bo, true);
|
|
continue;
|
|
}
|
|
|
|
if (!idle) {
|
|
long timeout;
|
|
|
|
if (ctx->no_wait_gpu &&
|
|
!dma_resv_test_signaled(bo->ttm.base.resv,
|
|
DMA_RESV_USAGE_BOOKKEEP))
|
|
return -EBUSY;
|
|
|
|
timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
|
|
DMA_RESV_USAGE_BOOKKEEP,
|
|
ctx->interruptible,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (!timeout)
|
|
return -ETIME;
|
|
if (timeout < 0)
|
|
return timeout;
|
|
|
|
idle = true;
|
|
}
|
|
|
|
drm_gpuvm_bo_for_each_va(gpuva, vm_bo) {
|
|
struct xe_vma *vma = gpuva_to_vma(gpuva);
|
|
|
|
trace_xe_vma_evict(vma);
|
|
ret = xe_vm_invalidate_vma(vma);
|
|
if (XE_WARN_ON(ret))
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The dma-buf map_attachment() / unmap_attachment() is hooked up here.
|
|
* Note that unmapping the attachment is deferred to the next
|
|
* map_attachment time, or to bo destroy (after idling) whichever comes first.
|
|
* This is to avoid syncing before unmap_attachment(), assuming that the
|
|
* caller relies on idling the reservation object before moving the
|
|
* backing store out. Should that assumption not hold, then we will be able
|
|
* to unconditionally call unmap_attachment() when moving out to system.
|
|
*/
|
|
static int xe_bo_move_dmabuf(struct ttm_buffer_object *ttm_bo,
|
|
struct ttm_resource *new_res)
|
|
{
|
|
struct dma_buf_attachment *attach = ttm_bo->base.import_attach;
|
|
struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm, struct xe_ttm_tt,
|
|
ttm);
|
|
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
|
|
struct sg_table *sg;
|
|
|
|
xe_assert(xe, attach);
|
|
xe_assert(xe, ttm_bo->ttm);
|
|
|
|
if (new_res->mem_type == XE_PL_SYSTEM)
|
|
goto out;
|
|
|
|
if (ttm_bo->sg) {
|
|
dma_buf_unmap_attachment(attach, ttm_bo->sg, DMA_BIDIRECTIONAL);
|
|
ttm_bo->sg = NULL;
|
|
}
|
|
|
|
sg = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
|
|
if (IS_ERR(sg))
|
|
return PTR_ERR(sg);
|
|
|
|
ttm_bo->sg = sg;
|
|
xe_tt->sg = sg;
|
|
|
|
out:
|
|
ttm_bo_move_null(ttm_bo, new_res);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_move_notify - Notify subsystems of a pending move
|
|
* @bo: The buffer object
|
|
* @ctx: The struct ttm_operation_ctx controlling locking and waits.
|
|
*
|
|
* This function notifies subsystems of an upcoming buffer move.
|
|
* Upon receiving such a notification, subsystems should schedule
|
|
* halting access to the underlying pages and optionally add a fence
|
|
* to the buffer object's dma_resv object, that signals when access is
|
|
* stopped. The caller will wait on all dma_resv fences before
|
|
* starting the move.
|
|
*
|
|
* A subsystem may commence access to the object after obtaining
|
|
* bindings to the new backing memory under the object lock.
|
|
*
|
|
* Return: 0 on success, -EINTR or -ERESTARTSYS if interrupted in fault mode,
|
|
* negative error code on error.
|
|
*/
|
|
static int xe_bo_move_notify(struct xe_bo *bo,
|
|
const struct ttm_operation_ctx *ctx)
|
|
{
|
|
struct ttm_buffer_object *ttm_bo = &bo->ttm;
|
|
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
|
|
struct ttm_resource *old_mem = ttm_bo->resource;
|
|
u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
|
|
int ret;
|
|
|
|
/*
|
|
* If this starts to call into many components, consider
|
|
* using a notification chain here.
|
|
*/
|
|
|
|
if (xe_bo_is_pinned(bo))
|
|
return -EINVAL;
|
|
|
|
xe_bo_vunmap(bo);
|
|
ret = xe_bo_trigger_rebind(xe, bo, ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Don't call move_notify() for imported dma-bufs. */
|
|
if (ttm_bo->base.dma_buf && !ttm_bo->base.import_attach)
|
|
dma_buf_move_notify(ttm_bo->base.dma_buf);
|
|
|
|
/*
|
|
* TTM has already nuked the mmap for us (see ttm_bo_unmap_virtual),
|
|
* so if we moved from VRAM make sure to unlink this from the userfault
|
|
* tracking.
|
|
*/
|
|
if (mem_type_is_vram(old_mem_type)) {
|
|
mutex_lock(&xe->mem_access.vram_userfault.lock);
|
|
if (!list_empty(&bo->vram_userfault_link))
|
|
list_del_init(&bo->vram_userfault_link);
|
|
mutex_unlock(&xe->mem_access.vram_userfault.lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int xe_bo_move(struct ttm_buffer_object *ttm_bo, bool evict,
|
|
struct ttm_operation_ctx *ctx,
|
|
struct ttm_resource *new_mem,
|
|
struct ttm_place *hop)
|
|
{
|
|
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
|
|
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
|
|
struct ttm_resource *old_mem = ttm_bo->resource;
|
|
u32 old_mem_type = old_mem ? old_mem->mem_type : XE_PL_SYSTEM;
|
|
struct ttm_tt *ttm = ttm_bo->ttm;
|
|
struct xe_migrate *migrate = NULL;
|
|
struct dma_fence *fence;
|
|
bool move_lacks_source;
|
|
bool tt_has_data;
|
|
bool needs_clear;
|
|
bool handle_system_ccs = (!IS_DGFX(xe) && xe_bo_needs_ccs_pages(bo) &&
|
|
ttm && ttm_tt_is_populated(ttm)) ? true : false;
|
|
int ret = 0;
|
|
|
|
/* Bo creation path, moving to system or TT. */
|
|
if ((!old_mem && ttm) && !handle_system_ccs) {
|
|
if (new_mem->mem_type == XE_PL_TT)
|
|
ret = xe_tt_map_sg(ttm);
|
|
if (!ret)
|
|
ttm_bo_move_null(ttm_bo, new_mem);
|
|
goto out;
|
|
}
|
|
|
|
if (ttm_bo->type == ttm_bo_type_sg) {
|
|
ret = xe_bo_move_notify(bo, ctx);
|
|
if (!ret)
|
|
ret = xe_bo_move_dmabuf(ttm_bo, new_mem);
|
|
return ret;
|
|
}
|
|
|
|
tt_has_data = ttm && (ttm_tt_is_populated(ttm) ||
|
|
(ttm->page_flags & TTM_TT_FLAG_SWAPPED));
|
|
|
|
move_lacks_source = !old_mem || (handle_system_ccs ? (!bo->ccs_cleared) :
|
|
(!mem_type_is_vram(old_mem_type) && !tt_has_data));
|
|
|
|
needs_clear = (ttm && ttm->page_flags & TTM_TT_FLAG_ZERO_ALLOC) ||
|
|
(!ttm && ttm_bo->type == ttm_bo_type_device);
|
|
|
|
if (new_mem->mem_type == XE_PL_TT) {
|
|
ret = xe_tt_map_sg(ttm);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if ((move_lacks_source && !needs_clear)) {
|
|
ttm_bo_move_null(ttm_bo, new_mem);
|
|
goto out;
|
|
}
|
|
|
|
if (old_mem_type == XE_PL_SYSTEM && new_mem->mem_type == XE_PL_TT && !handle_system_ccs) {
|
|
ttm_bo_move_null(ttm_bo, new_mem);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Failed multi-hop where the old_mem is still marked as
|
|
* TTM_PL_FLAG_TEMPORARY, should just be a dummy move.
|
|
*/
|
|
if (old_mem_type == XE_PL_TT &&
|
|
new_mem->mem_type == XE_PL_TT) {
|
|
ttm_bo_move_null(ttm_bo, new_mem);
|
|
goto out;
|
|
}
|
|
|
|
if (!move_lacks_source && !xe_bo_is_pinned(bo)) {
|
|
ret = xe_bo_move_notify(bo, ctx);
|
|
if (ret)
|
|
goto out;
|
|
}
|
|
|
|
if (old_mem_type == XE_PL_TT &&
|
|
new_mem->mem_type == XE_PL_SYSTEM) {
|
|
long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
|
|
DMA_RESV_USAGE_BOOKKEEP,
|
|
false,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (timeout < 0) {
|
|
ret = timeout;
|
|
goto out;
|
|
}
|
|
|
|
if (!handle_system_ccs) {
|
|
ttm_bo_move_null(ttm_bo, new_mem);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
if (!move_lacks_source &&
|
|
((old_mem_type == XE_PL_SYSTEM && resource_is_vram(new_mem)) ||
|
|
(mem_type_is_vram(old_mem_type) &&
|
|
new_mem->mem_type == XE_PL_SYSTEM))) {
|
|
hop->fpfn = 0;
|
|
hop->lpfn = 0;
|
|
hop->mem_type = XE_PL_TT;
|
|
hop->flags = TTM_PL_FLAG_TEMPORARY;
|
|
ret = -EMULTIHOP;
|
|
goto out;
|
|
}
|
|
|
|
if (bo->tile)
|
|
migrate = bo->tile->migrate;
|
|
else if (resource_is_vram(new_mem))
|
|
migrate = mem_type_to_migrate(xe, new_mem->mem_type);
|
|
else if (mem_type_is_vram(old_mem_type))
|
|
migrate = mem_type_to_migrate(xe, old_mem_type);
|
|
else
|
|
migrate = xe->tiles[0].migrate;
|
|
|
|
xe_assert(xe, migrate);
|
|
trace_xe_bo_move(bo, new_mem->mem_type, old_mem_type, move_lacks_source);
|
|
if (xe_rpm_reclaim_safe(xe)) {
|
|
/*
|
|
* We might be called through swapout in the validation path of
|
|
* another TTM device, so acquire rpm here.
|
|
*/
|
|
xe_pm_runtime_get(xe);
|
|
} else {
|
|
drm_WARN_ON(&xe->drm, handle_system_ccs);
|
|
xe_pm_runtime_get_noresume(xe);
|
|
}
|
|
|
|
if (xe_bo_is_pinned(bo) && !xe_bo_is_user(bo)) {
|
|
/*
|
|
* Kernel memory that is pinned should only be moved on suspend
|
|
* / resume, some of the pinned memory is required for the
|
|
* device to resume / use the GPU to move other evicted memory
|
|
* (user memory) around. This likely could be optimized a bit
|
|
* futher where we find the minimum set of pinned memory
|
|
* required for resume but for simplity doing a memcpy for all
|
|
* pinned memory.
|
|
*/
|
|
ret = xe_bo_vmap(bo);
|
|
if (!ret) {
|
|
ret = ttm_bo_move_memcpy(ttm_bo, ctx, new_mem);
|
|
|
|
/* Create a new VMAP once kernel BO back in VRAM */
|
|
if (!ret && resource_is_vram(new_mem)) {
|
|
struct xe_mem_region *vram = res_to_mem_region(new_mem);
|
|
void __iomem *new_addr = vram->mapping +
|
|
(new_mem->start << PAGE_SHIFT);
|
|
|
|
if (XE_WARN_ON(new_mem->start == XE_BO_INVALID_OFFSET)) {
|
|
ret = -EINVAL;
|
|
xe_pm_runtime_put(xe);
|
|
goto out;
|
|
}
|
|
|
|
xe_assert(xe, new_mem->start ==
|
|
bo->placements->fpfn);
|
|
|
|
iosys_map_set_vaddr_iomem(&bo->vmap, new_addr);
|
|
}
|
|
}
|
|
} else {
|
|
if (move_lacks_source) {
|
|
u32 flags = 0;
|
|
|
|
if (mem_type_is_vram(new_mem->mem_type))
|
|
flags |= XE_MIGRATE_CLEAR_FLAG_FULL;
|
|
else if (handle_system_ccs)
|
|
flags |= XE_MIGRATE_CLEAR_FLAG_CCS_DATA;
|
|
|
|
fence = xe_migrate_clear(migrate, bo, new_mem, flags);
|
|
}
|
|
else
|
|
fence = xe_migrate_copy(migrate, bo, bo, old_mem,
|
|
new_mem, handle_system_ccs);
|
|
if (IS_ERR(fence)) {
|
|
ret = PTR_ERR(fence);
|
|
xe_pm_runtime_put(xe);
|
|
goto out;
|
|
}
|
|
if (!move_lacks_source) {
|
|
ret = ttm_bo_move_accel_cleanup(ttm_bo, fence, evict,
|
|
true, new_mem);
|
|
if (ret) {
|
|
dma_fence_wait(fence, false);
|
|
ttm_bo_move_null(ttm_bo, new_mem);
|
|
ret = 0;
|
|
}
|
|
} else {
|
|
/*
|
|
* ttm_bo_move_accel_cleanup() may blow up if
|
|
* bo->resource == NULL, so just attach the
|
|
* fence and set the new resource.
|
|
*/
|
|
dma_resv_add_fence(ttm_bo->base.resv, fence,
|
|
DMA_RESV_USAGE_KERNEL);
|
|
ttm_bo_move_null(ttm_bo, new_mem);
|
|
}
|
|
|
|
dma_fence_put(fence);
|
|
}
|
|
|
|
xe_pm_runtime_put(xe);
|
|
|
|
out:
|
|
if ((!ttm_bo->resource || ttm_bo->resource->mem_type == XE_PL_SYSTEM) &&
|
|
ttm_bo->ttm) {
|
|
long timeout = dma_resv_wait_timeout(ttm_bo->base.resv,
|
|
DMA_RESV_USAGE_KERNEL,
|
|
false,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (timeout < 0)
|
|
ret = timeout;
|
|
|
|
xe_tt_unmap_sg(ttm_bo->ttm);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_evict_pinned() - Evict a pinned VRAM object to system memory
|
|
* @bo: The buffer object to move.
|
|
*
|
|
* On successful completion, the object memory will be moved to sytem memory.
|
|
*
|
|
* This is needed to for special handling of pinned VRAM object during
|
|
* suspend-resume.
|
|
*
|
|
* Return: 0 on success. Negative error code on failure.
|
|
*/
|
|
int xe_bo_evict_pinned(struct xe_bo *bo)
|
|
{
|
|
struct ttm_place place = {
|
|
.mem_type = XE_PL_TT,
|
|
};
|
|
struct ttm_placement placement = {
|
|
.placement = &place,
|
|
.num_placement = 1,
|
|
};
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false,
|
|
};
|
|
struct ttm_resource *new_mem;
|
|
int ret;
|
|
|
|
xe_bo_assert_held(bo);
|
|
|
|
if (WARN_ON(!bo->ttm.resource))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON(!xe_bo_is_pinned(bo)))
|
|
return -EINVAL;
|
|
|
|
if (!xe_bo_is_vram(bo))
|
|
return 0;
|
|
|
|
ret = ttm_bo_mem_space(&bo->ttm, &placement, &new_mem, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!bo->ttm.ttm) {
|
|
bo->ttm.ttm = xe_ttm_tt_create(&bo->ttm, 0);
|
|
if (!bo->ttm.ttm) {
|
|
ret = -ENOMEM;
|
|
goto err_res_free;
|
|
}
|
|
}
|
|
|
|
ret = ttm_bo_populate(&bo->ttm, &ctx);
|
|
if (ret)
|
|
goto err_res_free;
|
|
|
|
ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
|
|
if (ret)
|
|
goto err_res_free;
|
|
|
|
ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
|
|
if (ret)
|
|
goto err_res_free;
|
|
|
|
return 0;
|
|
|
|
err_res_free:
|
|
ttm_resource_free(&bo->ttm, &new_mem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_restore_pinned() - Restore a pinned VRAM object
|
|
* @bo: The buffer object to move.
|
|
*
|
|
* On successful completion, the object memory will be moved back to VRAM.
|
|
*
|
|
* This is needed to for special handling of pinned VRAM object during
|
|
* suspend-resume.
|
|
*
|
|
* Return: 0 on success. Negative error code on failure.
|
|
*/
|
|
int xe_bo_restore_pinned(struct xe_bo *bo)
|
|
{
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false,
|
|
};
|
|
struct ttm_resource *new_mem;
|
|
struct ttm_place *place = &bo->placements[0];
|
|
int ret;
|
|
|
|
xe_bo_assert_held(bo);
|
|
|
|
if (WARN_ON(!bo->ttm.resource))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON(!xe_bo_is_pinned(bo)))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON(xe_bo_is_vram(bo)))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ON(!bo->ttm.ttm && !xe_bo_is_stolen(bo)))
|
|
return -EINVAL;
|
|
|
|
if (!mem_type_is_vram(place->mem_type))
|
|
return 0;
|
|
|
|
ret = ttm_bo_mem_space(&bo->ttm, &bo->placement, &new_mem, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ttm_bo_populate(&bo->ttm, &ctx);
|
|
if (ret)
|
|
goto err_res_free;
|
|
|
|
ret = dma_resv_reserve_fences(bo->ttm.base.resv, 1);
|
|
if (ret)
|
|
goto err_res_free;
|
|
|
|
ret = xe_bo_move(&bo->ttm, false, &ctx, new_mem, NULL);
|
|
if (ret)
|
|
goto err_res_free;
|
|
|
|
return 0;
|
|
|
|
err_res_free:
|
|
ttm_resource_free(&bo->ttm, &new_mem);
|
|
return ret;
|
|
}
|
|
|
|
static unsigned long xe_ttm_io_mem_pfn(struct ttm_buffer_object *ttm_bo,
|
|
unsigned long page_offset)
|
|
{
|
|
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
|
|
struct xe_res_cursor cursor;
|
|
struct xe_mem_region *vram;
|
|
|
|
if (ttm_bo->resource->mem_type == XE_PL_STOLEN)
|
|
return xe_ttm_stolen_io_offset(bo, page_offset << PAGE_SHIFT) >> PAGE_SHIFT;
|
|
|
|
vram = res_to_mem_region(ttm_bo->resource);
|
|
xe_res_first(ttm_bo->resource, (u64)page_offset << PAGE_SHIFT, 0, &cursor);
|
|
return (vram->io_start + cursor.start) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static void __xe_bo_vunmap(struct xe_bo *bo);
|
|
|
|
/*
|
|
* TODO: Move this function to TTM so we don't rely on how TTM does its
|
|
* locking, thereby abusing TTM internals.
|
|
*/
|
|
static bool xe_ttm_bo_lock_in_destructor(struct ttm_buffer_object *ttm_bo)
|
|
{
|
|
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
|
|
bool locked;
|
|
|
|
xe_assert(xe, !kref_read(&ttm_bo->kref));
|
|
|
|
/*
|
|
* We can typically only race with TTM trylocking under the
|
|
* lru_lock, which will immediately be unlocked again since
|
|
* the ttm_bo refcount is zero at this point. So trylocking *should*
|
|
* always succeed here, as long as we hold the lru lock.
|
|
*/
|
|
spin_lock(&ttm_bo->bdev->lru_lock);
|
|
locked = dma_resv_trylock(ttm_bo->base.resv);
|
|
spin_unlock(&ttm_bo->bdev->lru_lock);
|
|
xe_assert(xe, locked);
|
|
|
|
return locked;
|
|
}
|
|
|
|
static void xe_ttm_bo_release_notify(struct ttm_buffer_object *ttm_bo)
|
|
{
|
|
struct dma_resv_iter cursor;
|
|
struct dma_fence *fence;
|
|
struct dma_fence *replacement = NULL;
|
|
struct xe_bo *bo;
|
|
|
|
if (!xe_bo_is_xe_bo(ttm_bo))
|
|
return;
|
|
|
|
bo = ttm_to_xe_bo(ttm_bo);
|
|
xe_assert(xe_bo_device(bo), !(bo->created && kref_read(&ttm_bo->base.refcount)));
|
|
|
|
/*
|
|
* Corner case where TTM fails to allocate memory and this BOs resv
|
|
* still points the VMs resv
|
|
*/
|
|
if (ttm_bo->base.resv != &ttm_bo->base._resv)
|
|
return;
|
|
|
|
if (!xe_ttm_bo_lock_in_destructor(ttm_bo))
|
|
return;
|
|
|
|
/*
|
|
* Scrub the preempt fences if any. The unbind fence is already
|
|
* attached to the resv.
|
|
* TODO: Don't do this for external bos once we scrub them after
|
|
* unbind.
|
|
*/
|
|
dma_resv_for_each_fence(&cursor, ttm_bo->base.resv,
|
|
DMA_RESV_USAGE_BOOKKEEP, fence) {
|
|
if (xe_fence_is_xe_preempt(fence) &&
|
|
!dma_fence_is_signaled(fence)) {
|
|
if (!replacement)
|
|
replacement = dma_fence_get_stub();
|
|
|
|
dma_resv_replace_fences(ttm_bo->base.resv,
|
|
fence->context,
|
|
replacement,
|
|
DMA_RESV_USAGE_BOOKKEEP);
|
|
}
|
|
}
|
|
dma_fence_put(replacement);
|
|
|
|
dma_resv_unlock(ttm_bo->base.resv);
|
|
}
|
|
|
|
static void xe_ttm_bo_delete_mem_notify(struct ttm_buffer_object *ttm_bo)
|
|
{
|
|
if (!xe_bo_is_xe_bo(ttm_bo))
|
|
return;
|
|
|
|
/*
|
|
* Object is idle and about to be destroyed. Release the
|
|
* dma-buf attachment.
|
|
*/
|
|
if (ttm_bo->type == ttm_bo_type_sg && ttm_bo->sg) {
|
|
struct xe_ttm_tt *xe_tt = container_of(ttm_bo->ttm,
|
|
struct xe_ttm_tt, ttm);
|
|
|
|
dma_buf_unmap_attachment(ttm_bo->base.import_attach, ttm_bo->sg,
|
|
DMA_BIDIRECTIONAL);
|
|
ttm_bo->sg = NULL;
|
|
xe_tt->sg = NULL;
|
|
}
|
|
}
|
|
|
|
static void xe_ttm_bo_purge(struct ttm_buffer_object *ttm_bo, struct ttm_operation_ctx *ctx)
|
|
{
|
|
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
|
|
|
|
if (ttm_bo->ttm) {
|
|
struct ttm_placement place = {};
|
|
int ret = ttm_bo_validate(ttm_bo, &place, ctx);
|
|
|
|
drm_WARN_ON(&xe->drm, ret);
|
|
}
|
|
}
|
|
|
|
static void xe_ttm_bo_swap_notify(struct ttm_buffer_object *ttm_bo)
|
|
{
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false
|
|
};
|
|
|
|
if (ttm_bo->ttm) {
|
|
struct xe_ttm_tt *xe_tt =
|
|
container_of(ttm_bo->ttm, struct xe_ttm_tt, ttm);
|
|
|
|
if (xe_tt->purgeable)
|
|
xe_ttm_bo_purge(ttm_bo, &ctx);
|
|
}
|
|
}
|
|
|
|
const struct ttm_device_funcs xe_ttm_funcs = {
|
|
.ttm_tt_create = xe_ttm_tt_create,
|
|
.ttm_tt_populate = xe_ttm_tt_populate,
|
|
.ttm_tt_unpopulate = xe_ttm_tt_unpopulate,
|
|
.ttm_tt_destroy = xe_ttm_tt_destroy,
|
|
.evict_flags = xe_evict_flags,
|
|
.move = xe_bo_move,
|
|
.io_mem_reserve = xe_ttm_io_mem_reserve,
|
|
.io_mem_pfn = xe_ttm_io_mem_pfn,
|
|
.release_notify = xe_ttm_bo_release_notify,
|
|
.eviction_valuable = ttm_bo_eviction_valuable,
|
|
.delete_mem_notify = xe_ttm_bo_delete_mem_notify,
|
|
.swap_notify = xe_ttm_bo_swap_notify,
|
|
};
|
|
|
|
static void xe_ttm_bo_destroy(struct ttm_buffer_object *ttm_bo)
|
|
{
|
|
struct xe_bo *bo = ttm_to_xe_bo(ttm_bo);
|
|
struct xe_device *xe = ttm_to_xe_device(ttm_bo->bdev);
|
|
|
|
if (bo->ttm.base.import_attach)
|
|
drm_prime_gem_destroy(&bo->ttm.base, NULL);
|
|
drm_gem_object_release(&bo->ttm.base);
|
|
|
|
xe_assert(xe, list_empty(&ttm_bo->base.gpuva.list));
|
|
|
|
if (bo->ggtt_node && bo->ggtt_node->base.size)
|
|
xe_ggtt_remove_bo(bo->tile->mem.ggtt, bo);
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
if (bo->client)
|
|
xe_drm_client_remove_bo(bo);
|
|
#endif
|
|
|
|
if (bo->vm && xe_bo_is_user(bo))
|
|
xe_vm_put(bo->vm);
|
|
|
|
mutex_lock(&xe->mem_access.vram_userfault.lock);
|
|
if (!list_empty(&bo->vram_userfault_link))
|
|
list_del(&bo->vram_userfault_link);
|
|
mutex_unlock(&xe->mem_access.vram_userfault.lock);
|
|
|
|
kfree(bo);
|
|
}
|
|
|
|
static void xe_gem_object_free(struct drm_gem_object *obj)
|
|
{
|
|
/* Our BO reference counting scheme works as follows:
|
|
*
|
|
* The gem object kref is typically used throughout the driver,
|
|
* and the gem object holds a ttm_buffer_object refcount, so
|
|
* that when the last gem object reference is put, which is when
|
|
* we end up in this function, we put also that ttm_buffer_object
|
|
* refcount. Anything using gem interfaces is then no longer
|
|
* allowed to access the object in a way that requires a gem
|
|
* refcount, including locking the object.
|
|
*
|
|
* driver ttm callbacks is allowed to use the ttm_buffer_object
|
|
* refcount directly if needed.
|
|
*/
|
|
__xe_bo_vunmap(gem_to_xe_bo(obj));
|
|
ttm_bo_put(container_of(obj, struct ttm_buffer_object, base));
|
|
}
|
|
|
|
static void xe_gem_object_close(struct drm_gem_object *obj,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct xe_bo *bo = gem_to_xe_bo(obj);
|
|
|
|
if (bo->vm && !xe_vm_in_fault_mode(bo->vm)) {
|
|
xe_assert(xe_bo_device(bo), xe_bo_is_user(bo));
|
|
|
|
xe_bo_lock(bo, false);
|
|
ttm_bo_set_bulk_move(&bo->ttm, NULL);
|
|
xe_bo_unlock(bo);
|
|
}
|
|
}
|
|
|
|
static vm_fault_t xe_gem_fault(struct vm_fault *vmf)
|
|
{
|
|
struct ttm_buffer_object *tbo = vmf->vma->vm_private_data;
|
|
struct drm_device *ddev = tbo->base.dev;
|
|
struct xe_device *xe = to_xe_device(ddev);
|
|
struct xe_bo *bo = ttm_to_xe_bo(tbo);
|
|
bool needs_rpm = bo->flags & XE_BO_FLAG_VRAM_MASK;
|
|
vm_fault_t ret;
|
|
int idx;
|
|
|
|
if (needs_rpm)
|
|
xe_pm_runtime_get(xe);
|
|
|
|
ret = ttm_bo_vm_reserve(tbo, vmf);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (drm_dev_enter(ddev, &idx)) {
|
|
trace_xe_bo_cpu_fault(bo);
|
|
|
|
ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
|
|
TTM_BO_VM_NUM_PREFAULT);
|
|
drm_dev_exit(idx);
|
|
} else {
|
|
ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
|
|
}
|
|
|
|
if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
|
|
goto out;
|
|
/*
|
|
* ttm_bo_vm_reserve() already has dma_resv_lock.
|
|
*/
|
|
if (ret == VM_FAULT_NOPAGE && mem_type_is_vram(tbo->resource->mem_type)) {
|
|
mutex_lock(&xe->mem_access.vram_userfault.lock);
|
|
if (list_empty(&bo->vram_userfault_link))
|
|
list_add(&bo->vram_userfault_link, &xe->mem_access.vram_userfault.list);
|
|
mutex_unlock(&xe->mem_access.vram_userfault.lock);
|
|
}
|
|
|
|
dma_resv_unlock(tbo->base.resv);
|
|
out:
|
|
if (needs_rpm)
|
|
xe_pm_runtime_put(xe);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct xe_gem_vm_ops = {
|
|
.fault = xe_gem_fault,
|
|
.open = ttm_bo_vm_open,
|
|
.close = ttm_bo_vm_close,
|
|
.access = ttm_bo_vm_access
|
|
};
|
|
|
|
static const struct drm_gem_object_funcs xe_gem_object_funcs = {
|
|
.free = xe_gem_object_free,
|
|
.close = xe_gem_object_close,
|
|
.mmap = drm_gem_ttm_mmap,
|
|
.export = xe_gem_prime_export,
|
|
.vm_ops = &xe_gem_vm_ops,
|
|
};
|
|
|
|
/**
|
|
* xe_bo_alloc - Allocate storage for a struct xe_bo
|
|
*
|
|
* This funcition is intended to allocate storage to be used for input
|
|
* to __xe_bo_create_locked(), in the case a pointer to the bo to be
|
|
* created is needed before the call to __xe_bo_create_locked().
|
|
* If __xe_bo_create_locked ends up never to be called, then the
|
|
* storage allocated with this function needs to be freed using
|
|
* xe_bo_free().
|
|
*
|
|
* Return: A pointer to an uninitialized struct xe_bo on success,
|
|
* ERR_PTR(-ENOMEM) on error.
|
|
*/
|
|
struct xe_bo *xe_bo_alloc(void)
|
|
{
|
|
struct xe_bo *bo = kzalloc(sizeof(*bo), GFP_KERNEL);
|
|
|
|
if (!bo)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
return bo;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_free - Free storage allocated using xe_bo_alloc()
|
|
* @bo: The buffer object storage.
|
|
*
|
|
* Refer to xe_bo_alloc() documentation for valid use-cases.
|
|
*/
|
|
void xe_bo_free(struct xe_bo *bo)
|
|
{
|
|
kfree(bo);
|
|
}
|
|
|
|
struct xe_bo *___xe_bo_create_locked(struct xe_device *xe, struct xe_bo *bo,
|
|
struct xe_tile *tile, struct dma_resv *resv,
|
|
struct ttm_lru_bulk_move *bulk, size_t size,
|
|
u16 cpu_caching, enum ttm_bo_type type,
|
|
u32 flags)
|
|
{
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = true,
|
|
.no_wait_gpu = false,
|
|
};
|
|
struct ttm_placement *placement;
|
|
uint32_t alignment;
|
|
size_t aligned_size;
|
|
int err;
|
|
|
|
/* Only kernel objects should set GT */
|
|
xe_assert(xe, !tile || type == ttm_bo_type_kernel);
|
|
|
|
if (XE_WARN_ON(!size)) {
|
|
xe_bo_free(bo);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
if (flags & (XE_BO_FLAG_VRAM_MASK | XE_BO_FLAG_STOLEN) &&
|
|
!(flags & XE_BO_FLAG_IGNORE_MIN_PAGE_SIZE) &&
|
|
((xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) ||
|
|
(flags & (XE_BO_FLAG_NEEDS_64K | XE_BO_FLAG_NEEDS_2M)))) {
|
|
size_t align = flags & XE_BO_FLAG_NEEDS_2M ? SZ_2M : SZ_64K;
|
|
|
|
aligned_size = ALIGN(size, align);
|
|
if (type != ttm_bo_type_device)
|
|
size = ALIGN(size, align);
|
|
flags |= XE_BO_FLAG_INTERNAL_64K;
|
|
alignment = align >> PAGE_SHIFT;
|
|
} else {
|
|
aligned_size = ALIGN(size, SZ_4K);
|
|
flags &= ~XE_BO_FLAG_INTERNAL_64K;
|
|
alignment = SZ_4K >> PAGE_SHIFT;
|
|
}
|
|
|
|
if (type == ttm_bo_type_device && aligned_size != size)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
if (!bo) {
|
|
bo = xe_bo_alloc();
|
|
if (IS_ERR(bo))
|
|
return bo;
|
|
}
|
|
|
|
bo->ccs_cleared = false;
|
|
bo->tile = tile;
|
|
bo->size = size;
|
|
bo->flags = flags;
|
|
bo->cpu_caching = cpu_caching;
|
|
bo->ttm.base.funcs = &xe_gem_object_funcs;
|
|
bo->ttm.priority = XE_BO_PRIORITY_NORMAL;
|
|
INIT_LIST_HEAD(&bo->pinned_link);
|
|
#ifdef CONFIG_PROC_FS
|
|
INIT_LIST_HEAD(&bo->client_link);
|
|
#endif
|
|
INIT_LIST_HEAD(&bo->vram_userfault_link);
|
|
|
|
drm_gem_private_object_init(&xe->drm, &bo->ttm.base, size);
|
|
|
|
if (resv) {
|
|
ctx.allow_res_evict = !(flags & XE_BO_FLAG_NO_RESV_EVICT);
|
|
ctx.resv = resv;
|
|
}
|
|
|
|
if (!(flags & XE_BO_FLAG_FIXED_PLACEMENT)) {
|
|
err = __xe_bo_placement_for_flags(xe, bo, bo->flags);
|
|
if (WARN_ON(err)) {
|
|
xe_ttm_bo_destroy(&bo->ttm);
|
|
return ERR_PTR(err);
|
|
}
|
|
}
|
|
|
|
/* Defer populating type_sg bos */
|
|
placement = (type == ttm_bo_type_sg ||
|
|
bo->flags & XE_BO_FLAG_DEFER_BACKING) ? &sys_placement :
|
|
&bo->placement;
|
|
err = ttm_bo_init_reserved(&xe->ttm, &bo->ttm, type,
|
|
placement, alignment,
|
|
&ctx, NULL, resv, xe_ttm_bo_destroy);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
/*
|
|
* The VRAM pages underneath are potentially still being accessed by the
|
|
* GPU, as per async GPU clearing and async evictions. However TTM makes
|
|
* sure to add any corresponding move/clear fences into the objects
|
|
* dma-resv using the DMA_RESV_USAGE_KERNEL slot.
|
|
*
|
|
* For KMD internal buffers we don't care about GPU clearing, however we
|
|
* still need to handle async evictions, where the VRAM is still being
|
|
* accessed by the GPU. Most internal callers are not expecting this,
|
|
* since they are missing the required synchronisation before accessing
|
|
* the memory. To keep things simple just sync wait any kernel fences
|
|
* here, if the buffer is designated KMD internal.
|
|
*
|
|
* For normal userspace objects we should already have the required
|
|
* pipelining or sync waiting elsewhere, since we already have to deal
|
|
* with things like async GPU clearing.
|
|
*/
|
|
if (type == ttm_bo_type_kernel) {
|
|
long timeout = dma_resv_wait_timeout(bo->ttm.base.resv,
|
|
DMA_RESV_USAGE_KERNEL,
|
|
ctx.interruptible,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
|
|
if (timeout < 0) {
|
|
if (!resv)
|
|
dma_resv_unlock(bo->ttm.base.resv);
|
|
xe_bo_put(bo);
|
|
return ERR_PTR(timeout);
|
|
}
|
|
}
|
|
|
|
bo->created = true;
|
|
if (bulk)
|
|
ttm_bo_set_bulk_move(&bo->ttm, bulk);
|
|
else
|
|
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
|
|
|
|
return bo;
|
|
}
|
|
|
|
static int __xe_bo_fixed_placement(struct xe_device *xe,
|
|
struct xe_bo *bo,
|
|
u32 flags,
|
|
u64 start, u64 end, u64 size)
|
|
{
|
|
struct ttm_place *place = bo->placements;
|
|
|
|
if (flags & (XE_BO_FLAG_USER | XE_BO_FLAG_SYSTEM))
|
|
return -EINVAL;
|
|
|
|
place->flags = TTM_PL_FLAG_CONTIGUOUS;
|
|
place->fpfn = start >> PAGE_SHIFT;
|
|
place->lpfn = end >> PAGE_SHIFT;
|
|
|
|
switch (flags & (XE_BO_FLAG_STOLEN | XE_BO_FLAG_VRAM_MASK)) {
|
|
case XE_BO_FLAG_VRAM0:
|
|
place->mem_type = XE_PL_VRAM0;
|
|
break;
|
|
case XE_BO_FLAG_VRAM1:
|
|
place->mem_type = XE_PL_VRAM1;
|
|
break;
|
|
case XE_BO_FLAG_STOLEN:
|
|
place->mem_type = XE_PL_STOLEN;
|
|
break;
|
|
|
|
default:
|
|
/* 0 or multiple of the above set */
|
|
return -EINVAL;
|
|
}
|
|
|
|
bo->placement = (struct ttm_placement) {
|
|
.num_placement = 1,
|
|
.placement = place,
|
|
};
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct xe_bo *
|
|
__xe_bo_create_locked(struct xe_device *xe,
|
|
struct xe_tile *tile, struct xe_vm *vm,
|
|
size_t size, u64 start, u64 end,
|
|
u16 cpu_caching, enum ttm_bo_type type, u32 flags,
|
|
u64 alignment)
|
|
{
|
|
struct xe_bo *bo = NULL;
|
|
int err;
|
|
|
|
if (vm)
|
|
xe_vm_assert_held(vm);
|
|
|
|
if (start || end != ~0ULL) {
|
|
bo = xe_bo_alloc();
|
|
if (IS_ERR(bo))
|
|
return bo;
|
|
|
|
flags |= XE_BO_FLAG_FIXED_PLACEMENT;
|
|
err = __xe_bo_fixed_placement(xe, bo, flags, start, end, size);
|
|
if (err) {
|
|
xe_bo_free(bo);
|
|
return ERR_PTR(err);
|
|
}
|
|
}
|
|
|
|
bo = ___xe_bo_create_locked(xe, bo, tile, vm ? xe_vm_resv(vm) : NULL,
|
|
vm && !xe_vm_in_fault_mode(vm) &&
|
|
flags & XE_BO_FLAG_USER ?
|
|
&vm->lru_bulk_move : NULL, size,
|
|
cpu_caching, type, flags);
|
|
if (IS_ERR(bo))
|
|
return bo;
|
|
|
|
bo->min_align = alignment;
|
|
|
|
/*
|
|
* Note that instead of taking a reference no the drm_gpuvm_resv_bo(),
|
|
* to ensure the shared resv doesn't disappear under the bo, the bo
|
|
* will keep a reference to the vm, and avoid circular references
|
|
* by having all the vm's bo refereferences released at vm close
|
|
* time.
|
|
*/
|
|
if (vm && xe_bo_is_user(bo))
|
|
xe_vm_get(vm);
|
|
bo->vm = vm;
|
|
|
|
if (bo->flags & XE_BO_FLAG_GGTT) {
|
|
if (!tile && flags & XE_BO_FLAG_STOLEN)
|
|
tile = xe_device_get_root_tile(xe);
|
|
|
|
xe_assert(xe, tile);
|
|
|
|
if (flags & XE_BO_FLAG_FIXED_PLACEMENT) {
|
|
err = xe_ggtt_insert_bo_at(tile->mem.ggtt, bo,
|
|
start + bo->size, U64_MAX);
|
|
} else {
|
|
err = xe_ggtt_insert_bo(tile->mem.ggtt, bo);
|
|
}
|
|
if (err)
|
|
goto err_unlock_put_bo;
|
|
}
|
|
|
|
return bo;
|
|
|
|
err_unlock_put_bo:
|
|
__xe_bo_unset_bulk_move(bo);
|
|
xe_bo_unlock_vm_held(bo);
|
|
xe_bo_put(bo);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct xe_bo *
|
|
xe_bo_create_locked_range(struct xe_device *xe,
|
|
struct xe_tile *tile, struct xe_vm *vm,
|
|
size_t size, u64 start, u64 end,
|
|
enum ttm_bo_type type, u32 flags, u64 alignment)
|
|
{
|
|
return __xe_bo_create_locked(xe, tile, vm, size, start, end, 0, type,
|
|
flags, alignment);
|
|
}
|
|
|
|
struct xe_bo *xe_bo_create_locked(struct xe_device *xe, struct xe_tile *tile,
|
|
struct xe_vm *vm, size_t size,
|
|
enum ttm_bo_type type, u32 flags)
|
|
{
|
|
return __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL, 0, type,
|
|
flags, 0);
|
|
}
|
|
|
|
struct xe_bo *xe_bo_create_user(struct xe_device *xe, struct xe_tile *tile,
|
|
struct xe_vm *vm, size_t size,
|
|
u16 cpu_caching,
|
|
u32 flags)
|
|
{
|
|
struct xe_bo *bo = __xe_bo_create_locked(xe, tile, vm, size, 0, ~0ULL,
|
|
cpu_caching, ttm_bo_type_device,
|
|
flags | XE_BO_FLAG_USER, 0);
|
|
if (!IS_ERR(bo))
|
|
xe_bo_unlock_vm_held(bo);
|
|
|
|
return bo;
|
|
}
|
|
|
|
struct xe_bo *xe_bo_create(struct xe_device *xe, struct xe_tile *tile,
|
|
struct xe_vm *vm, size_t size,
|
|
enum ttm_bo_type type, u32 flags)
|
|
{
|
|
struct xe_bo *bo = xe_bo_create_locked(xe, tile, vm, size, type, flags);
|
|
|
|
if (!IS_ERR(bo))
|
|
xe_bo_unlock_vm_held(bo);
|
|
|
|
return bo;
|
|
}
|
|
|
|
struct xe_bo *xe_bo_create_pin_map_at(struct xe_device *xe, struct xe_tile *tile,
|
|
struct xe_vm *vm,
|
|
size_t size, u64 offset,
|
|
enum ttm_bo_type type, u32 flags)
|
|
{
|
|
return xe_bo_create_pin_map_at_aligned(xe, tile, vm, size, offset,
|
|
type, flags, 0);
|
|
}
|
|
|
|
struct xe_bo *xe_bo_create_pin_map_at_aligned(struct xe_device *xe,
|
|
struct xe_tile *tile,
|
|
struct xe_vm *vm,
|
|
size_t size, u64 offset,
|
|
enum ttm_bo_type type, u32 flags,
|
|
u64 alignment)
|
|
{
|
|
struct xe_bo *bo;
|
|
int err;
|
|
u64 start = offset == ~0ull ? 0 : offset;
|
|
u64 end = offset == ~0ull ? offset : start + size;
|
|
|
|
if (flags & XE_BO_FLAG_STOLEN &&
|
|
xe_ttm_stolen_cpu_access_needs_ggtt(xe))
|
|
flags |= XE_BO_FLAG_GGTT;
|
|
|
|
bo = xe_bo_create_locked_range(xe, tile, vm, size, start, end, type,
|
|
flags | XE_BO_FLAG_NEEDS_CPU_ACCESS,
|
|
alignment);
|
|
if (IS_ERR(bo))
|
|
return bo;
|
|
|
|
err = xe_bo_pin(bo);
|
|
if (err)
|
|
goto err_put;
|
|
|
|
err = xe_bo_vmap(bo);
|
|
if (err)
|
|
goto err_unpin;
|
|
|
|
xe_bo_unlock_vm_held(bo);
|
|
|
|
return bo;
|
|
|
|
err_unpin:
|
|
xe_bo_unpin(bo);
|
|
err_put:
|
|
xe_bo_unlock_vm_held(bo);
|
|
xe_bo_put(bo);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct xe_bo *xe_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
|
|
struct xe_vm *vm, size_t size,
|
|
enum ttm_bo_type type, u32 flags)
|
|
{
|
|
return xe_bo_create_pin_map_at(xe, tile, vm, size, ~0ull, type, flags);
|
|
}
|
|
|
|
struct xe_bo *xe_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
|
|
const void *data, size_t size,
|
|
enum ttm_bo_type type, u32 flags)
|
|
{
|
|
struct xe_bo *bo = xe_bo_create_pin_map(xe, tile, NULL,
|
|
ALIGN(size, PAGE_SIZE),
|
|
type, flags);
|
|
if (IS_ERR(bo))
|
|
return bo;
|
|
|
|
xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
|
|
|
|
return bo;
|
|
}
|
|
|
|
static void __xe_bo_unpin_map_no_vm(void *arg)
|
|
{
|
|
xe_bo_unpin_map_no_vm(arg);
|
|
}
|
|
|
|
struct xe_bo *xe_managed_bo_create_pin_map(struct xe_device *xe, struct xe_tile *tile,
|
|
size_t size, u32 flags)
|
|
{
|
|
struct xe_bo *bo;
|
|
int ret;
|
|
|
|
bo = xe_bo_create_pin_map(xe, tile, NULL, size, ttm_bo_type_kernel, flags);
|
|
if (IS_ERR(bo))
|
|
return bo;
|
|
|
|
ret = devm_add_action_or_reset(xe->drm.dev, __xe_bo_unpin_map_no_vm, bo);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return bo;
|
|
}
|
|
|
|
struct xe_bo *xe_managed_bo_create_from_data(struct xe_device *xe, struct xe_tile *tile,
|
|
const void *data, size_t size, u32 flags)
|
|
{
|
|
struct xe_bo *bo = xe_managed_bo_create_pin_map(xe, tile, ALIGN(size, PAGE_SIZE), flags);
|
|
|
|
if (IS_ERR(bo))
|
|
return bo;
|
|
|
|
xe_map_memcpy_to(xe, &bo->vmap, 0, data, size);
|
|
|
|
return bo;
|
|
}
|
|
|
|
/**
|
|
* xe_managed_bo_reinit_in_vram
|
|
* @xe: xe device
|
|
* @tile: Tile where the new buffer will be created
|
|
* @src: Managed buffer object allocated in system memory
|
|
*
|
|
* Replace a managed src buffer object allocated in system memory with a new
|
|
* one allocated in vram, copying the data between them.
|
|
* Buffer object in VRAM is not going to have the same GGTT address, the caller
|
|
* is responsible for making sure that any old references to it are updated.
|
|
*
|
|
* Returns 0 for success, negative error code otherwise.
|
|
*/
|
|
int xe_managed_bo_reinit_in_vram(struct xe_device *xe, struct xe_tile *tile, struct xe_bo **src)
|
|
{
|
|
struct xe_bo *bo;
|
|
u32 dst_flags = XE_BO_FLAG_VRAM_IF_DGFX(tile) | XE_BO_FLAG_GGTT;
|
|
|
|
dst_flags |= (*src)->flags & XE_BO_FLAG_GGTT_INVALIDATE;
|
|
|
|
xe_assert(xe, IS_DGFX(xe));
|
|
xe_assert(xe, !(*src)->vmap.is_iomem);
|
|
|
|
bo = xe_managed_bo_create_from_data(xe, tile, (*src)->vmap.vaddr,
|
|
(*src)->size, dst_flags);
|
|
if (IS_ERR(bo))
|
|
return PTR_ERR(bo);
|
|
|
|
devm_release_action(xe->drm.dev, __xe_bo_unpin_map_no_vm, *src);
|
|
*src = bo;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* XXX: This is in the VM bind data path, likely should calculate this once and
|
|
* store, with a recalculation if the BO is moved.
|
|
*/
|
|
uint64_t vram_region_gpu_offset(struct ttm_resource *res)
|
|
{
|
|
struct xe_device *xe = ttm_to_xe_device(res->bo->bdev);
|
|
|
|
if (res->mem_type == XE_PL_STOLEN)
|
|
return xe_ttm_stolen_gpu_offset(xe);
|
|
|
|
return res_to_mem_region(res)->dpa_base;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_pin_external - pin an external BO
|
|
* @bo: buffer object to be pinned
|
|
*
|
|
* Pin an external (not tied to a VM, can be exported via dma-buf / prime FD)
|
|
* BO. Unique call compared to xe_bo_pin as this function has it own set of
|
|
* asserts and code to ensure evict / restore on suspend / resume.
|
|
*
|
|
* Returns 0 for success, negative error code otherwise.
|
|
*/
|
|
int xe_bo_pin_external(struct xe_bo *bo)
|
|
{
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
int err;
|
|
|
|
xe_assert(xe, !bo->vm);
|
|
xe_assert(xe, xe_bo_is_user(bo));
|
|
|
|
if (!xe_bo_is_pinned(bo)) {
|
|
err = xe_bo_validate(bo, NULL, false);
|
|
if (err)
|
|
return err;
|
|
|
|
if (xe_bo_is_vram(bo)) {
|
|
spin_lock(&xe->pinned.lock);
|
|
list_add_tail(&bo->pinned_link,
|
|
&xe->pinned.external_vram);
|
|
spin_unlock(&xe->pinned.lock);
|
|
}
|
|
}
|
|
|
|
ttm_bo_pin(&bo->ttm);
|
|
|
|
/*
|
|
* FIXME: If we always use the reserve / unreserve functions for locking
|
|
* we do not need this.
|
|
*/
|
|
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int xe_bo_pin(struct xe_bo *bo)
|
|
{
|
|
struct ttm_place *place = &bo->placements[0];
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
int err;
|
|
|
|
/* We currently don't expect user BO to be pinned */
|
|
xe_assert(xe, !xe_bo_is_user(bo));
|
|
|
|
/* Pinned object must be in GGTT or have pinned flag */
|
|
xe_assert(xe, bo->flags & (XE_BO_FLAG_PINNED |
|
|
XE_BO_FLAG_GGTT));
|
|
|
|
/*
|
|
* No reason we can't support pinning imported dma-bufs we just don't
|
|
* expect to pin an imported dma-buf.
|
|
*/
|
|
xe_assert(xe, !bo->ttm.base.import_attach);
|
|
|
|
/* We only expect at most 1 pin */
|
|
xe_assert(xe, !xe_bo_is_pinned(bo));
|
|
|
|
err = xe_bo_validate(bo, NULL, false);
|
|
if (err)
|
|
return err;
|
|
|
|
/*
|
|
* For pinned objects in on DGFX, which are also in vram, we expect
|
|
* these to be in contiguous VRAM memory. Required eviction / restore
|
|
* during suspend / resume (force restore to same physical address).
|
|
*/
|
|
if (IS_DGFX(xe) && !(IS_ENABLED(CONFIG_DRM_XE_DEBUG) &&
|
|
bo->flags & XE_BO_FLAG_INTERNAL_TEST)) {
|
|
if (mem_type_is_vram(place->mem_type)) {
|
|
xe_assert(xe, place->flags & TTM_PL_FLAG_CONTIGUOUS);
|
|
|
|
place->fpfn = (xe_bo_addr(bo, 0, PAGE_SIZE) -
|
|
vram_region_gpu_offset(bo->ttm.resource)) >> PAGE_SHIFT;
|
|
place->lpfn = place->fpfn + (bo->size >> PAGE_SHIFT);
|
|
}
|
|
}
|
|
|
|
if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
|
|
spin_lock(&xe->pinned.lock);
|
|
list_add_tail(&bo->pinned_link, &xe->pinned.kernel_bo_present);
|
|
spin_unlock(&xe->pinned.lock);
|
|
}
|
|
|
|
ttm_bo_pin(&bo->ttm);
|
|
|
|
/*
|
|
* FIXME: If we always use the reserve / unreserve functions for locking
|
|
* we do not need this.
|
|
*/
|
|
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_unpin_external - unpin an external BO
|
|
* @bo: buffer object to be unpinned
|
|
*
|
|
* Unpin an external (not tied to a VM, can be exported via dma-buf / prime FD)
|
|
* BO. Unique call compared to xe_bo_unpin as this function has it own set of
|
|
* asserts and code to ensure evict / restore on suspend / resume.
|
|
*
|
|
* Returns 0 for success, negative error code otherwise.
|
|
*/
|
|
void xe_bo_unpin_external(struct xe_bo *bo)
|
|
{
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
|
|
xe_assert(xe, !bo->vm);
|
|
xe_assert(xe, xe_bo_is_pinned(bo));
|
|
xe_assert(xe, xe_bo_is_user(bo));
|
|
|
|
spin_lock(&xe->pinned.lock);
|
|
if (bo->ttm.pin_count == 1 && !list_empty(&bo->pinned_link))
|
|
list_del_init(&bo->pinned_link);
|
|
spin_unlock(&xe->pinned.lock);
|
|
|
|
ttm_bo_unpin(&bo->ttm);
|
|
|
|
/*
|
|
* FIXME: If we always use the reserve / unreserve functions for locking
|
|
* we do not need this.
|
|
*/
|
|
ttm_bo_move_to_lru_tail_unlocked(&bo->ttm);
|
|
}
|
|
|
|
void xe_bo_unpin(struct xe_bo *bo)
|
|
{
|
|
struct ttm_place *place = &bo->placements[0];
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
|
|
xe_assert(xe, !bo->ttm.base.import_attach);
|
|
xe_assert(xe, xe_bo_is_pinned(bo));
|
|
|
|
if (mem_type_is_vram(place->mem_type) || bo->flags & XE_BO_FLAG_GGTT) {
|
|
spin_lock(&xe->pinned.lock);
|
|
xe_assert(xe, !list_empty(&bo->pinned_link));
|
|
list_del_init(&bo->pinned_link);
|
|
spin_unlock(&xe->pinned.lock);
|
|
}
|
|
ttm_bo_unpin(&bo->ttm);
|
|
}
|
|
|
|
/**
|
|
* xe_bo_validate() - Make sure the bo is in an allowed placement
|
|
* @bo: The bo,
|
|
* @vm: Pointer to a the vm the bo shares a locked dma_resv object with, or
|
|
* NULL. Used together with @allow_res_evict.
|
|
* @allow_res_evict: Whether it's allowed to evict bos sharing @vm's
|
|
* reservation object.
|
|
*
|
|
* Make sure the bo is in allowed placement, migrating it if necessary. If
|
|
* needed, other bos will be evicted. If bos selected for eviction shares
|
|
* the @vm's reservation object, they can be evicted iff @allow_res_evict is
|
|
* set to true, otherwise they will be bypassed.
|
|
*
|
|
* Return: 0 on success, negative error code on failure. May return
|
|
* -EINTR or -ERESTARTSYS if internal waits are interrupted by a signal.
|
|
*/
|
|
int xe_bo_validate(struct xe_bo *bo, struct xe_vm *vm, bool allow_res_evict)
|
|
{
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = true,
|
|
.no_wait_gpu = false,
|
|
};
|
|
|
|
if (vm) {
|
|
lockdep_assert_held(&vm->lock);
|
|
xe_vm_assert_held(vm);
|
|
|
|
ctx.allow_res_evict = allow_res_evict;
|
|
ctx.resv = xe_vm_resv(vm);
|
|
}
|
|
|
|
return ttm_bo_validate(&bo->ttm, &bo->placement, &ctx);
|
|
}
|
|
|
|
bool xe_bo_is_xe_bo(struct ttm_buffer_object *bo)
|
|
{
|
|
if (bo->destroy == &xe_ttm_bo_destroy)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Resolve a BO address. There is no assert to check if the proper lock is held
|
|
* so it should only be used in cases where it is not fatal to get the wrong
|
|
* address, such as printing debug information, but not in cases where memory is
|
|
* written based on this result.
|
|
*/
|
|
dma_addr_t __xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
|
|
{
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
struct xe_res_cursor cur;
|
|
u64 page;
|
|
|
|
xe_assert(xe, page_size <= PAGE_SIZE);
|
|
page = offset >> PAGE_SHIFT;
|
|
offset &= (PAGE_SIZE - 1);
|
|
|
|
if (!xe_bo_is_vram(bo) && !xe_bo_is_stolen(bo)) {
|
|
xe_assert(xe, bo->ttm.ttm);
|
|
|
|
xe_res_first_sg(xe_bo_sg(bo), page << PAGE_SHIFT,
|
|
page_size, &cur);
|
|
return xe_res_dma(&cur) + offset;
|
|
} else {
|
|
struct xe_res_cursor cur;
|
|
|
|
xe_res_first(bo->ttm.resource, page << PAGE_SHIFT,
|
|
page_size, &cur);
|
|
return cur.start + offset + vram_region_gpu_offset(bo->ttm.resource);
|
|
}
|
|
}
|
|
|
|
dma_addr_t xe_bo_addr(struct xe_bo *bo, u64 offset, size_t page_size)
|
|
{
|
|
if (!READ_ONCE(bo->ttm.pin_count))
|
|
xe_bo_assert_held(bo);
|
|
return __xe_bo_addr(bo, offset, page_size);
|
|
}
|
|
|
|
int xe_bo_vmap(struct xe_bo *bo)
|
|
{
|
|
void *virtual;
|
|
bool is_iomem;
|
|
int ret;
|
|
|
|
xe_bo_assert_held(bo);
|
|
|
|
if (!(bo->flags & XE_BO_FLAG_NEEDS_CPU_ACCESS))
|
|
return -EINVAL;
|
|
|
|
if (!iosys_map_is_null(&bo->vmap))
|
|
return 0;
|
|
|
|
/*
|
|
* We use this more or less deprecated interface for now since
|
|
* ttm_bo_vmap() doesn't offer the optimization of kmapping
|
|
* single page bos, which is done here.
|
|
* TODO: Fix up ttm_bo_vmap to do that, or fix up ttm_bo_kmap
|
|
* to use struct iosys_map.
|
|
*/
|
|
ret = ttm_bo_kmap(&bo->ttm, 0, bo->size >> PAGE_SHIFT, &bo->kmap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
virtual = ttm_kmap_obj_virtual(&bo->kmap, &is_iomem);
|
|
if (is_iomem)
|
|
iosys_map_set_vaddr_iomem(&bo->vmap, (void __iomem *)virtual);
|
|
else
|
|
iosys_map_set_vaddr(&bo->vmap, virtual);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __xe_bo_vunmap(struct xe_bo *bo)
|
|
{
|
|
if (!iosys_map_is_null(&bo->vmap)) {
|
|
iosys_map_clear(&bo->vmap);
|
|
ttm_bo_kunmap(&bo->kmap);
|
|
}
|
|
}
|
|
|
|
void xe_bo_vunmap(struct xe_bo *bo)
|
|
{
|
|
xe_bo_assert_held(bo);
|
|
__xe_bo_vunmap(bo);
|
|
}
|
|
|
|
int xe_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct xe_device *xe = to_xe_device(dev);
|
|
struct xe_file *xef = to_xe_file(file);
|
|
struct drm_xe_gem_create *args = data;
|
|
struct xe_vm *vm = NULL;
|
|
struct xe_bo *bo;
|
|
unsigned int bo_flags;
|
|
u32 handle;
|
|
int err;
|
|
|
|
if (XE_IOCTL_DBG(xe, args->extensions) ||
|
|
XE_IOCTL_DBG(xe, args->pad[0] || args->pad[1] || args->pad[2]) ||
|
|
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
|
|
return -EINVAL;
|
|
|
|
/* at least one valid memory placement must be specified */
|
|
if (XE_IOCTL_DBG(xe, (args->placement & ~xe->info.mem_region_mask) ||
|
|
!args->placement))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, args->flags &
|
|
~(DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING |
|
|
DRM_XE_GEM_CREATE_FLAG_SCANOUT |
|
|
DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM)))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, args->handle))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, !args->size))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, args->size > SIZE_MAX))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, args->size & ~PAGE_MASK))
|
|
return -EINVAL;
|
|
|
|
bo_flags = 0;
|
|
if (args->flags & DRM_XE_GEM_CREATE_FLAG_DEFER_BACKING)
|
|
bo_flags |= XE_BO_FLAG_DEFER_BACKING;
|
|
|
|
if (args->flags & DRM_XE_GEM_CREATE_FLAG_SCANOUT)
|
|
bo_flags |= XE_BO_FLAG_SCANOUT;
|
|
|
|
bo_flags |= args->placement << (ffs(XE_BO_FLAG_SYSTEM) - 1);
|
|
|
|
/* CCS formats need physical placement at a 64K alignment in VRAM. */
|
|
if ((bo_flags & XE_BO_FLAG_VRAM_MASK) &&
|
|
(bo_flags & XE_BO_FLAG_SCANOUT) &&
|
|
!(xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K) &&
|
|
IS_ALIGNED(args->size, SZ_64K))
|
|
bo_flags |= XE_BO_FLAG_NEEDS_64K;
|
|
|
|
if (args->flags & DRM_XE_GEM_CREATE_FLAG_NEEDS_VISIBLE_VRAM) {
|
|
if (XE_IOCTL_DBG(xe, !(bo_flags & XE_BO_FLAG_VRAM_MASK)))
|
|
return -EINVAL;
|
|
|
|
bo_flags |= XE_BO_FLAG_NEEDS_CPU_ACCESS;
|
|
}
|
|
|
|
if (XE_IOCTL_DBG(xe, !args->cpu_caching ||
|
|
args->cpu_caching > DRM_XE_GEM_CPU_CACHING_WC))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_VRAM_MASK &&
|
|
args->cpu_caching != DRM_XE_GEM_CPU_CACHING_WC))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, bo_flags & XE_BO_FLAG_SCANOUT &&
|
|
args->cpu_caching == DRM_XE_GEM_CPU_CACHING_WB))
|
|
return -EINVAL;
|
|
|
|
if (args->vm_id) {
|
|
vm = xe_vm_lookup(xef, args->vm_id);
|
|
if (XE_IOCTL_DBG(xe, !vm))
|
|
return -ENOENT;
|
|
err = xe_vm_lock(vm, true);
|
|
if (err)
|
|
goto out_vm;
|
|
}
|
|
|
|
bo = xe_bo_create_user(xe, NULL, vm, args->size, args->cpu_caching,
|
|
bo_flags);
|
|
|
|
if (vm)
|
|
xe_vm_unlock(vm);
|
|
|
|
if (IS_ERR(bo)) {
|
|
err = PTR_ERR(bo);
|
|
goto out_vm;
|
|
}
|
|
|
|
err = drm_gem_handle_create(file, &bo->ttm.base, &handle);
|
|
if (err)
|
|
goto out_bulk;
|
|
|
|
args->handle = handle;
|
|
goto out_put;
|
|
|
|
out_bulk:
|
|
if (vm && !xe_vm_in_fault_mode(vm)) {
|
|
xe_vm_lock(vm, false);
|
|
__xe_bo_unset_bulk_move(bo);
|
|
xe_vm_unlock(vm);
|
|
}
|
|
out_put:
|
|
xe_bo_put(bo);
|
|
out_vm:
|
|
if (vm)
|
|
xe_vm_put(vm);
|
|
|
|
return err;
|
|
}
|
|
|
|
int xe_gem_mmap_offset_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct xe_device *xe = to_xe_device(dev);
|
|
struct drm_xe_gem_mmap_offset *args = data;
|
|
struct drm_gem_object *gem_obj;
|
|
|
|
if (XE_IOCTL_DBG(xe, args->extensions) ||
|
|
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
|
|
return -EINVAL;
|
|
|
|
if (XE_IOCTL_DBG(xe, args->flags))
|
|
return -EINVAL;
|
|
|
|
gem_obj = drm_gem_object_lookup(file, args->handle);
|
|
if (XE_IOCTL_DBG(xe, !gem_obj))
|
|
return -ENOENT;
|
|
|
|
/* The mmap offset was set up at BO allocation time. */
|
|
args->offset = drm_vma_node_offset_addr(&gem_obj->vma_node);
|
|
|
|
xe_bo_put(gem_to_xe_bo(gem_obj));
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_lock() - Lock the buffer object's dma_resv object
|
|
* @bo: The struct xe_bo whose lock is to be taken
|
|
* @intr: Whether to perform any wait interruptible
|
|
*
|
|
* Locks the buffer object's dma_resv object. If the buffer object is
|
|
* pointing to a shared dma_resv object, that shared lock is locked.
|
|
*
|
|
* Return: 0 on success, -EINTR if @intr is true and the wait for a
|
|
* contended lock was interrupted. If @intr is set to false, the
|
|
* function always returns 0.
|
|
*/
|
|
int xe_bo_lock(struct xe_bo *bo, bool intr)
|
|
{
|
|
if (intr)
|
|
return dma_resv_lock_interruptible(bo->ttm.base.resv, NULL);
|
|
|
|
dma_resv_lock(bo->ttm.base.resv, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_unlock() - Unlock the buffer object's dma_resv object
|
|
* @bo: The struct xe_bo whose lock is to be released.
|
|
*
|
|
* Unlock a buffer object lock that was locked by xe_bo_lock().
|
|
*/
|
|
void xe_bo_unlock(struct xe_bo *bo)
|
|
{
|
|
dma_resv_unlock(bo->ttm.base.resv);
|
|
}
|
|
|
|
/**
|
|
* xe_bo_can_migrate - Whether a buffer object likely can be migrated
|
|
* @bo: The buffer object to migrate
|
|
* @mem_type: The TTM memory type intended to migrate to
|
|
*
|
|
* Check whether the buffer object supports migration to the
|
|
* given memory type. Note that pinning may affect the ability to migrate as
|
|
* returned by this function.
|
|
*
|
|
* This function is primarily intended as a helper for checking the
|
|
* possibility to migrate buffer objects and can be called without
|
|
* the object lock held.
|
|
*
|
|
* Return: true if migration is possible, false otherwise.
|
|
*/
|
|
bool xe_bo_can_migrate(struct xe_bo *bo, u32 mem_type)
|
|
{
|
|
unsigned int cur_place;
|
|
|
|
if (bo->ttm.type == ttm_bo_type_kernel)
|
|
return true;
|
|
|
|
if (bo->ttm.type == ttm_bo_type_sg)
|
|
return false;
|
|
|
|
for (cur_place = 0; cur_place < bo->placement.num_placement;
|
|
cur_place++) {
|
|
if (bo->placements[cur_place].mem_type == mem_type)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void xe_place_from_ttm_type(u32 mem_type, struct ttm_place *place)
|
|
{
|
|
memset(place, 0, sizeof(*place));
|
|
place->mem_type = mem_type;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_migrate - Migrate an object to the desired region id
|
|
* @bo: The buffer object to migrate.
|
|
* @mem_type: The TTM region type to migrate to.
|
|
*
|
|
* Attempt to migrate the buffer object to the desired memory region. The
|
|
* buffer object may not be pinned, and must be locked.
|
|
* On successful completion, the object memory type will be updated,
|
|
* but an async migration task may not have completed yet, and to
|
|
* accomplish that, the object's kernel fences must be signaled with
|
|
* the object lock held.
|
|
*
|
|
* Return: 0 on success. Negative error code on failure. In particular may
|
|
* return -EINTR or -ERESTARTSYS if signal pending.
|
|
*/
|
|
int xe_bo_migrate(struct xe_bo *bo, u32 mem_type)
|
|
{
|
|
struct xe_device *xe = ttm_to_xe_device(bo->ttm.bdev);
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = true,
|
|
.no_wait_gpu = false,
|
|
};
|
|
struct ttm_placement placement;
|
|
struct ttm_place requested;
|
|
|
|
xe_bo_assert_held(bo);
|
|
|
|
if (bo->ttm.resource->mem_type == mem_type)
|
|
return 0;
|
|
|
|
if (xe_bo_is_pinned(bo))
|
|
return -EBUSY;
|
|
|
|
if (!xe_bo_can_migrate(bo, mem_type))
|
|
return -EINVAL;
|
|
|
|
xe_place_from_ttm_type(mem_type, &requested);
|
|
placement.num_placement = 1;
|
|
placement.placement = &requested;
|
|
|
|
/*
|
|
* Stolen needs to be handled like below VRAM handling if we ever need
|
|
* to support it.
|
|
*/
|
|
drm_WARN_ON(&xe->drm, mem_type == XE_PL_STOLEN);
|
|
|
|
if (mem_type_is_vram(mem_type)) {
|
|
u32 c = 0;
|
|
|
|
add_vram(xe, bo, &requested, bo->flags, mem_type, &c);
|
|
}
|
|
|
|
return ttm_bo_validate(&bo->ttm, &placement, &ctx);
|
|
}
|
|
|
|
/**
|
|
* xe_bo_evict - Evict an object to evict placement
|
|
* @bo: The buffer object to migrate.
|
|
* @force_alloc: Set force_alloc in ttm_operation_ctx
|
|
*
|
|
* On successful completion, the object memory will be moved to evict
|
|
* placement. Ths function blocks until the object has been fully moved.
|
|
*
|
|
* Return: 0 on success. Negative error code on failure.
|
|
*/
|
|
int xe_bo_evict(struct xe_bo *bo, bool force_alloc)
|
|
{
|
|
struct ttm_operation_ctx ctx = {
|
|
.interruptible = false,
|
|
.no_wait_gpu = false,
|
|
.force_alloc = force_alloc,
|
|
};
|
|
struct ttm_placement placement;
|
|
int ret;
|
|
|
|
xe_evict_flags(&bo->ttm, &placement);
|
|
ret = ttm_bo_validate(&bo->ttm, &placement, &ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
dma_resv_wait_timeout(bo->ttm.base.resv, DMA_RESV_USAGE_KERNEL,
|
|
false, MAX_SCHEDULE_TIMEOUT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* xe_bo_needs_ccs_pages - Whether a bo needs to back up CCS pages when
|
|
* placed in system memory.
|
|
* @bo: The xe_bo
|
|
*
|
|
* Return: true if extra pages need to be allocated, false otherwise.
|
|
*/
|
|
bool xe_bo_needs_ccs_pages(struct xe_bo *bo)
|
|
{
|
|
struct xe_device *xe = xe_bo_device(bo);
|
|
|
|
if (GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe))
|
|
return false;
|
|
|
|
if (!xe_device_has_flat_ccs(xe) || bo->ttm.type != ttm_bo_type_device)
|
|
return false;
|
|
|
|
/* On discrete GPUs, if the GPU can access this buffer from
|
|
* system memory (i.e., it allows XE_PL_TT placement), FlatCCS
|
|
* can't be used since there's no CCS storage associated with
|
|
* non-VRAM addresses.
|
|
*/
|
|
if (IS_DGFX(xe) && (bo->flags & XE_BO_FLAG_SYSTEM))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* __xe_bo_release_dummy() - Dummy kref release function
|
|
* @kref: The embedded struct kref.
|
|
*
|
|
* Dummy release function for xe_bo_put_deferred(). Keep off.
|
|
*/
|
|
void __xe_bo_release_dummy(struct kref *kref)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* xe_bo_put_commit() - Put bos whose put was deferred by xe_bo_put_deferred().
|
|
* @deferred: The lockless list used for the call to xe_bo_put_deferred().
|
|
*
|
|
* Puts all bos whose put was deferred by xe_bo_put_deferred().
|
|
* The @deferred list can be either an onstack local list or a global
|
|
* shared list used by a workqueue.
|
|
*/
|
|
void xe_bo_put_commit(struct llist_head *deferred)
|
|
{
|
|
struct llist_node *freed;
|
|
struct xe_bo *bo, *next;
|
|
|
|
if (!deferred)
|
|
return;
|
|
|
|
freed = llist_del_all(deferred);
|
|
if (!freed)
|
|
return;
|
|
|
|
llist_for_each_entry_safe(bo, next, freed, freed)
|
|
drm_gem_object_free(&bo->ttm.base.refcount);
|
|
}
|
|
|
|
void xe_bo_put(struct xe_bo *bo)
|
|
{
|
|
might_sleep();
|
|
if (bo) {
|
|
#ifdef CONFIG_PROC_FS
|
|
if (bo->client)
|
|
might_lock(&bo->client->bos_lock);
|
|
#endif
|
|
if (bo->ggtt_node && bo->ggtt_node->ggtt)
|
|
might_lock(&bo->ggtt_node->ggtt->lock);
|
|
drm_gem_object_put(&bo->ttm.base);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xe_bo_dumb_create - Create a dumb bo as backing for a fb
|
|
* @file_priv: ...
|
|
* @dev: ...
|
|
* @args: ...
|
|
*
|
|
* See dumb_create() hook in include/drm/drm_drv.h
|
|
*
|
|
* Return: ...
|
|
*/
|
|
int xe_bo_dumb_create(struct drm_file *file_priv,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args)
|
|
{
|
|
struct xe_device *xe = to_xe_device(dev);
|
|
struct xe_bo *bo;
|
|
uint32_t handle;
|
|
int cpp = DIV_ROUND_UP(args->bpp, 8);
|
|
int err;
|
|
u32 page_size = max_t(u32, PAGE_SIZE,
|
|
xe->info.vram_flags & XE_VRAM_FLAGS_NEED64K ? SZ_64K : SZ_4K);
|
|
|
|
args->pitch = ALIGN(args->width * cpp, 64);
|
|
args->size = ALIGN(mul_u32_u32(args->pitch, args->height),
|
|
page_size);
|
|
|
|
bo = xe_bo_create_user(xe, NULL, NULL, args->size,
|
|
DRM_XE_GEM_CPU_CACHING_WC,
|
|
XE_BO_FLAG_VRAM_IF_DGFX(xe_device_get_root_tile(xe)) |
|
|
XE_BO_FLAG_SCANOUT |
|
|
XE_BO_FLAG_NEEDS_CPU_ACCESS);
|
|
if (IS_ERR(bo))
|
|
return PTR_ERR(bo);
|
|
|
|
err = drm_gem_handle_create(file_priv, &bo->ttm.base, &handle);
|
|
/* drop reference from allocate - handle holds it now */
|
|
drm_gem_object_put(&bo->ttm.base);
|
|
if (!err)
|
|
args->handle = handle;
|
|
return err;
|
|
}
|
|
|
|
void xe_bo_runtime_pm_release_mmap_offset(struct xe_bo *bo)
|
|
{
|
|
struct ttm_buffer_object *tbo = &bo->ttm;
|
|
struct ttm_device *bdev = tbo->bdev;
|
|
|
|
drm_vma_node_unmap(&tbo->base.vma_node, bdev->dev_mapping);
|
|
|
|
list_del_init(&bo->vram_userfault_link);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
|
|
#include "tests/xe_bo.c"
|
|
#endif
|