JustOS/linux-6.13/drivers/gpu/drm/msm/adreno/a6xx_gpu.h
justuser 02e73b8cd9 up
2025-01-24 17:00:19 +03:00

295 lines
8.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2017, 2019 The Linux Foundation. All rights reserved. */
#ifndef __A6XX_GPU_H__
#define __A6XX_GPU_H__
#include "adreno_gpu.h"
#include "a6xx.xml.h"
#include "a6xx_gmu.h"
extern bool hang_debug;
struct cpu_gpu_lock {
uint32_t gpu_req;
uint32_t cpu_req;
uint32_t turn;
union {
struct {
uint16_t list_length;
uint16_t list_offset;
};
struct {
uint8_t ifpc_list_len;
uint8_t preemption_list_len;
uint16_t dynamic_list_len;
};
};
uint64_t regs[62];
};
/**
* struct a6xx_info - a6xx specific information from device table
*
* @hwcg: hw clock gating register sequence
* @protect: CP_PROTECT settings
* @pwrup_reglist pwrup reglist for preemption
*/
struct a6xx_info {
const struct adreno_reglist *hwcg;
const struct adreno_protect *protect;
const struct adreno_reglist_list *pwrup_reglist;
u32 gmu_chipid;
u32 gmu_cgc_mode;
u32 prim_fifo_threshold;
};
struct a6xx_gpu {
struct adreno_gpu base;
struct drm_gem_object *sqe_bo;
uint64_t sqe_iova;
struct msm_ringbuffer *cur_ring;
struct msm_ringbuffer *next_ring;
struct drm_gem_object *preempt_bo[MSM_GPU_MAX_RINGS];
void *preempt[MSM_GPU_MAX_RINGS];
uint64_t preempt_iova[MSM_GPU_MAX_RINGS];
struct drm_gem_object *preempt_smmu_bo[MSM_GPU_MAX_RINGS];
void *preempt_smmu[MSM_GPU_MAX_RINGS];
uint64_t preempt_smmu_iova[MSM_GPU_MAX_RINGS];
uint32_t last_seqno[MSM_GPU_MAX_RINGS];
atomic_t preempt_state;
spinlock_t eval_lock;
struct timer_list preempt_timer;
unsigned int preempt_level;
bool uses_gmem;
bool skip_save_restore;
struct drm_gem_object *preempt_postamble_bo;
void *preempt_postamble_ptr;
uint64_t preempt_postamble_iova;
uint64_t preempt_postamble_len;
bool postamble_enabled;
struct a6xx_gmu gmu;
struct drm_gem_object *shadow_bo;
uint64_t shadow_iova;
uint32_t *shadow;
struct drm_gem_object *pwrup_reglist_bo;
void *pwrup_reglist_ptr;
uint64_t pwrup_reglist_iova;
bool pwrup_reglist_emitted;
bool has_whereami;
void __iomem *llc_mmio;
void *llc_slice;
void *htw_llc_slice;
bool have_mmu500;
bool hung;
};
#define to_a6xx_gpu(x) container_of(x, struct a6xx_gpu, base)
/*
* In order to do lockless preemption we use a simple state machine to progress
* through the process.
*
* PREEMPT_NONE - no preemption in progress. Next state START.
* PREEMPT_START - The trigger is evaluating if preemption is possible. Next
* states: TRIGGERED, NONE
* PREEMPT_FINISH - An intermediate state before moving back to NONE. Next
* state: NONE.
* PREEMPT_TRIGGERED: A preemption has been executed on the hardware. Next
* states: FAULTED, PENDING
* PREEMPT_FAULTED: A preemption timed out (never completed). This will trigger
* recovery. Next state: N/A
* PREEMPT_PENDING: Preemption complete interrupt fired - the callback is
* checking the success of the operation. Next state: FAULTED, NONE.
*/
enum a6xx_preempt_state {
PREEMPT_NONE = 0,
PREEMPT_START,
PREEMPT_FINISH,
PREEMPT_TRIGGERED,
PREEMPT_FAULTED,
PREEMPT_PENDING,
};
/*
* struct a6xx_preempt_record is a shared buffer between the microcode and the
* CPU to store the state for preemption. The record itself is much larger
* (2112k) but most of that is used by the CP for storage.
*
* There is a preemption record assigned per ringbuffer. When the CPU triggers a
* preemption, it fills out the record with the useful information (wptr, ring
* base, etc) and the microcode uses that information to set up the CP following
* the preemption. When a ring is switched out, the CP will save the ringbuffer
* state back to the record. In this way, once the records are properly set up
* the CPU can quickly switch back and forth between ringbuffers by only
* updating a few registers (often only the wptr).
*
* These are the CPU aware registers in the record:
* @magic: Must always be 0xAE399D6EUL
* @info: Type of the record - written 0 by the CPU, updated by the CP
* @errno: preemption error record
* @data: Data field in YIELD and SET_MARKER packets, Written and used by CP
* @cntl: Value of RB_CNTL written by CPU, save/restored by CP
* @rptr: Value of RB_RPTR written by CPU, save/restored by CP
* @wptr: Value of RB_WPTR written by CPU, save/restored by CP
* @_pad: Reserved/padding
* @rptr_addr: Value of RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP
* @rbase: Value of RB_BASE written by CPU, save/restored by CP
* @counter: GPU address of the storage area for the preemption counters
* @bv_rptr_addr: Value of BV_RB_RPTR_ADDR_LO|HI written by CPU, save/restored by CP
*/
struct a6xx_preempt_record {
u32 magic;
u32 info;
u32 errno;
u32 data;
u32 cntl;
u32 rptr;
u32 wptr;
u32 _pad;
u64 rptr_addr;
u64 rbase;
u64 counter;
u64 bv_rptr_addr;
};
#define A6XX_PREEMPT_RECORD_MAGIC 0xAE399D6EUL
#define PREEMPT_SMMU_INFO_SIZE 4096
#define PREEMPT_RECORD_SIZE(adreno_gpu) \
((adreno_gpu->info->preempt_record_size) == 0 ? \
4192 * SZ_1K : (adreno_gpu->info->preempt_record_size))
/*
* The preemption counter block is a storage area for the value of the
* preemption counters that are saved immediately before context switch. We
* append it on to the end of the allocation for the preemption record.
*/
#define A6XX_PREEMPT_COUNTER_SIZE (16 * 4)
struct a7xx_cp_smmu_info {
u32 magic;
u32 _pad4;
u64 ttbr0;
u32 asid;
u32 context_idr;
u32 context_bank;
};
#define GEN7_CP_SMMU_INFO_MAGIC 0x241350d5UL
/*
* Given a register and a count, return a value to program into
* REG_CP_PROTECT_REG(n) - this will block both reads and writes for
* _len + 1 registers starting at _reg.
*/
#define A6XX_PROTECT_NORDWR(_reg, _len) \
((1 << 31) | \
(((_len) & 0x3FFF) << 18) | ((_reg) & 0x3FFFF))
/*
* Same as above, but allow reads over the range. For areas of mixed use (such
* as performance counters) this allows us to protect a much larger range with a
* single register
*/
#define A6XX_PROTECT_RDONLY(_reg, _len) \
((((_len) & 0x3FFF) << 18) | ((_reg) & 0x3FFFF))
static inline bool a6xx_has_gbif(struct adreno_gpu *gpu)
{
if(adreno_is_a630(gpu))
return false;
return true;
}
static inline void a6xx_llc_rmw(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 mask, u32 or)
{
return msm_rmw(a6xx_gpu->llc_mmio + (reg << 2), mask, or);
}
static inline u32 a6xx_llc_read(struct a6xx_gpu *a6xx_gpu, u32 reg)
{
return readl(a6xx_gpu->llc_mmio + (reg << 2));
}
static inline void a6xx_llc_write(struct a6xx_gpu *a6xx_gpu, u32 reg, u32 value)
{
writel(value, a6xx_gpu->llc_mmio + (reg << 2));
}
#define shadowptr(_a6xx_gpu, _ring) ((_a6xx_gpu)->shadow_iova + \
((_ring)->id * sizeof(uint32_t)))
int a6xx_gmu_resume(struct a6xx_gpu *gpu);
int a6xx_gmu_stop(struct a6xx_gpu *gpu);
int a6xx_gmu_wait_for_idle(struct a6xx_gmu *gmu);
bool a6xx_gmu_isidle(struct a6xx_gmu *gmu);
int a6xx_gmu_set_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state);
void a6xx_gmu_clear_oob(struct a6xx_gmu *gmu, enum a6xx_gmu_oob_state state);
int a6xx_gmu_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node);
int a6xx_gmu_wrapper_init(struct a6xx_gpu *a6xx_gpu, struct device_node *node);
void a6xx_gmu_remove(struct a6xx_gpu *a6xx_gpu);
void a6xx_preempt_init(struct msm_gpu *gpu);
void a6xx_preempt_hw_init(struct msm_gpu *gpu);
void a6xx_preempt_trigger(struct msm_gpu *gpu);
void a6xx_preempt_irq(struct msm_gpu *gpu);
void a6xx_preempt_fini(struct msm_gpu *gpu);
int a6xx_preempt_submitqueue_setup(struct msm_gpu *gpu,
struct msm_gpu_submitqueue *queue);
void a6xx_preempt_submitqueue_close(struct msm_gpu *gpu,
struct msm_gpu_submitqueue *queue);
/* Return true if we are in a preempt state */
static inline bool a6xx_in_preempt(struct a6xx_gpu *a6xx_gpu)
{
/*
* Make sure the read to preempt_state is ordered with respect to reads
* of other variables before ...
*/
smp_rmb();
int preempt_state = atomic_read(&a6xx_gpu->preempt_state);
/* ... and after. */
smp_rmb();
return !(preempt_state == PREEMPT_NONE ||
preempt_state == PREEMPT_FINISH);
}
void a6xx_gmu_set_freq(struct msm_gpu *gpu, struct dev_pm_opp *opp,
bool suspended);
unsigned long a6xx_gmu_get_freq(struct msm_gpu *gpu);
void a6xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
struct drm_printer *p);
struct msm_gpu_state *a6xx_gpu_state_get(struct msm_gpu *gpu);
int a6xx_gpu_state_put(struct msm_gpu_state *state);
void a6xx_bus_clear_pending_transactions(struct adreno_gpu *adreno_gpu, bool gx_off);
void a6xx_gpu_sw_reset(struct msm_gpu *gpu, bool assert);
#endif /* __A6XX_GPU_H__ */