470 lines
15 KiB
C
470 lines
15 KiB
C
/*
|
|
* Copyright © 2012-2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eugeni Dodonov <eugeni.dodonov@intel.com>
|
|
* Daniel Vetter <daniel.vetter@ffwll.ch>
|
|
*
|
|
*/
|
|
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <drm/drm_print.h>
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_trace.h"
|
|
|
|
/**
|
|
* DOC: runtime pm
|
|
*
|
|
* The i915 driver supports dynamic enabling and disabling of entire hardware
|
|
* blocks at runtime. This is especially important on the display side where
|
|
* software is supposed to control many power gates manually on recent hardware,
|
|
* since on the GT side a lot of the power management is done by the hardware.
|
|
* But even there some manual control at the device level is required.
|
|
*
|
|
* Since i915 supports a diverse set of platforms with a unified codebase and
|
|
* hardware engineers just love to shuffle functionality around between power
|
|
* domains there's a sizeable amount of indirection required. This file provides
|
|
* generic functions to the driver for grabbing and releasing references for
|
|
* abstract power domains. It then maps those to the actual power wells
|
|
* present for a given platform.
|
|
*/
|
|
|
|
static struct drm_i915_private *rpm_to_i915(struct intel_runtime_pm *rpm)
|
|
{
|
|
return container_of(rpm, struct drm_i915_private, runtime_pm);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
|
|
|
|
static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
|
{
|
|
ref_tracker_dir_init(&rpm->debug, INTEL_REFTRACK_DEAD_COUNT, dev_name(rpm->kdev));
|
|
}
|
|
|
|
static intel_wakeref_t
|
|
track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
|
{
|
|
if (!rpm->available || rpm->no_wakeref_tracking)
|
|
return INTEL_WAKEREF_DEF;
|
|
|
|
return intel_ref_tracker_alloc(&rpm->debug);
|
|
}
|
|
|
|
static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
|
|
intel_wakeref_t wakeref)
|
|
{
|
|
if (!rpm->available || rpm->no_wakeref_tracking)
|
|
return;
|
|
|
|
intel_ref_tracker_free(&rpm->debug, wakeref);
|
|
}
|
|
|
|
static void untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
|
|
{
|
|
ref_tracker_dir_exit(&rpm->debug);
|
|
}
|
|
|
|
static noinline void
|
|
__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
|
|
{
|
|
unsigned long flags;
|
|
|
|
if (!atomic_dec_and_lock_irqsave(&rpm->wakeref_count,
|
|
&rpm->debug.lock,
|
|
flags))
|
|
return;
|
|
|
|
ref_tracker_dir_print_locked(&rpm->debug, INTEL_REFTRACK_PRINT_LIMIT);
|
|
spin_unlock_irqrestore(&rpm->debug.lock, flags);
|
|
}
|
|
|
|
void print_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
|
|
struct drm_printer *p)
|
|
{
|
|
intel_ref_tracker_show(&rpm->debug, p);
|
|
}
|
|
|
|
#else
|
|
|
|
static void init_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
|
{
|
|
}
|
|
|
|
static intel_wakeref_t
|
|
track_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm)
|
|
{
|
|
return INTEL_WAKEREF_DEF;
|
|
}
|
|
|
|
static void untrack_intel_runtime_pm_wakeref(struct intel_runtime_pm *rpm,
|
|
intel_wakeref_t wakeref)
|
|
{
|
|
}
|
|
|
|
static void
|
|
__intel_wakeref_dec_and_check_tracking(struct intel_runtime_pm *rpm)
|
|
{
|
|
atomic_dec(&rpm->wakeref_count);
|
|
}
|
|
|
|
static void
|
|
untrack_all_intel_runtime_pm_wakerefs(struct intel_runtime_pm *rpm)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
static void
|
|
intel_runtime_pm_acquire(struct intel_runtime_pm *rpm, bool wakelock)
|
|
{
|
|
if (wakelock) {
|
|
atomic_add(1 + INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
|
|
assert_rpm_wakelock_held(rpm);
|
|
} else {
|
|
atomic_inc(&rpm->wakeref_count);
|
|
assert_rpm_raw_wakeref_held(rpm);
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_runtime_pm_release(struct intel_runtime_pm *rpm, int wakelock)
|
|
{
|
|
if (wakelock) {
|
|
assert_rpm_wakelock_held(rpm);
|
|
atomic_sub(INTEL_RPM_WAKELOCK_BIAS, &rpm->wakeref_count);
|
|
} else {
|
|
assert_rpm_raw_wakeref_held(rpm);
|
|
}
|
|
|
|
__intel_wakeref_dec_and_check_tracking(rpm);
|
|
}
|
|
|
|
static intel_wakeref_t __intel_runtime_pm_get(struct intel_runtime_pm *rpm,
|
|
bool wakelock)
|
|
{
|
|
struct drm_i915_private *i915 = rpm_to_i915(rpm);
|
|
int ret;
|
|
|
|
ret = pm_runtime_get_sync(rpm->kdev);
|
|
drm_WARN_ONCE(&i915->drm, ret < 0,
|
|
"pm_runtime_get_sync() failed: %d\n", ret);
|
|
|
|
intel_runtime_pm_acquire(rpm, wakelock);
|
|
|
|
return track_intel_runtime_pm_wakeref(rpm);
|
|
}
|
|
|
|
/**
|
|
* intel_runtime_pm_get_raw - grab a raw runtime pm reference
|
|
* @rpm: the intel_runtime_pm structure
|
|
*
|
|
* This is the unlocked version of intel_display_power_is_enabled() and should
|
|
* only be used from error capture and recovery code where deadlocks are
|
|
* possible.
|
|
* This function grabs a device-level runtime pm reference (mostly used for
|
|
* asynchronous PM management from display code) and ensures that it is powered
|
|
* up. Raw references are not considered during wakelock assert checks.
|
|
*
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
* call to intel_runtime_pm_put_raw() to release the reference again.
|
|
*
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put_raw(), evaluates
|
|
* as True if the wakeref was acquired, or False otherwise.
|
|
*/
|
|
intel_wakeref_t intel_runtime_pm_get_raw(struct intel_runtime_pm *rpm)
|
|
{
|
|
return __intel_runtime_pm_get(rpm, false);
|
|
}
|
|
|
|
/**
|
|
* intel_runtime_pm_get - grab a runtime pm reference
|
|
* @rpm: the intel_runtime_pm structure
|
|
*
|
|
* This function grabs a device-level runtime pm reference (mostly used for GEM
|
|
* code to ensure the GTT or GT is on) and ensures that it is powered up.
|
|
*
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
* call to intel_runtime_pm_put() to release the reference again.
|
|
*
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put()
|
|
*/
|
|
intel_wakeref_t intel_runtime_pm_get(struct intel_runtime_pm *rpm)
|
|
{
|
|
return __intel_runtime_pm_get(rpm, true);
|
|
}
|
|
|
|
/**
|
|
* __intel_runtime_pm_get_if_active - grab a runtime pm reference if device is active
|
|
* @rpm: the intel_runtime_pm structure
|
|
* @ignore_usecount: get a ref even if dev->power.usage_count is 0
|
|
*
|
|
* This function grabs a device-level runtime pm reference if the device is
|
|
* already active and ensures that it is powered up. It is illegal to try
|
|
* and access the HW should intel_runtime_pm_get_if_active() report failure.
|
|
*
|
|
* If @ignore_usecount is true, a reference will be acquired even if there is no
|
|
* user requiring the device to be powered up (dev->power.usage_count == 0).
|
|
* If the function returns false in this case then it's guaranteed that the
|
|
* device's runtime suspend hook has been called already or that it will be
|
|
* called (and hence it's also guaranteed that the device's runtime resume
|
|
* hook will be called eventually).
|
|
*
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
* call to intel_runtime_pm_put() to release the reference again.
|
|
*
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put(), evaluates
|
|
* as True if the wakeref was acquired, or False otherwise.
|
|
*/
|
|
static intel_wakeref_t __intel_runtime_pm_get_if_active(struct intel_runtime_pm *rpm,
|
|
bool ignore_usecount)
|
|
{
|
|
if (IS_ENABLED(CONFIG_PM)) {
|
|
/*
|
|
* In cases runtime PM is disabled by the RPM core and we get
|
|
* an -EINVAL return value we are not supposed to call this
|
|
* function, since the power state is undefined. This applies
|
|
* atm to the late/early system suspend/resume handlers.
|
|
*/
|
|
if ((ignore_usecount &&
|
|
pm_runtime_get_if_active(rpm->kdev) <= 0) ||
|
|
(!ignore_usecount &&
|
|
pm_runtime_get_if_in_use(rpm->kdev) <= 0))
|
|
return NULL;
|
|
}
|
|
|
|
intel_runtime_pm_acquire(rpm, true);
|
|
|
|
return track_intel_runtime_pm_wakeref(rpm);
|
|
}
|
|
|
|
intel_wakeref_t intel_runtime_pm_get_if_in_use(struct intel_runtime_pm *rpm)
|
|
{
|
|
return __intel_runtime_pm_get_if_active(rpm, false);
|
|
}
|
|
|
|
intel_wakeref_t intel_runtime_pm_get_if_active(struct intel_runtime_pm *rpm)
|
|
{
|
|
return __intel_runtime_pm_get_if_active(rpm, true);
|
|
}
|
|
|
|
/**
|
|
* intel_runtime_pm_get_noresume - grab a runtime pm reference
|
|
* @rpm: the intel_runtime_pm structure
|
|
*
|
|
* This function grabs a device-level runtime pm reference.
|
|
*
|
|
* It will _not_ resume the device but instead only get an extra wakeref.
|
|
* Therefore it is only valid to call this functions from contexts where
|
|
* the device is known to be active and with another wakeref previously hold.
|
|
*
|
|
* Any runtime pm reference obtained by this function must have a symmetric
|
|
* call to intel_runtime_pm_put() to release the reference again.
|
|
*
|
|
* Returns: the wakeref cookie to pass to intel_runtime_pm_put()
|
|
*/
|
|
intel_wakeref_t intel_runtime_pm_get_noresume(struct intel_runtime_pm *rpm)
|
|
{
|
|
assert_rpm_raw_wakeref_held(rpm);
|
|
pm_runtime_get_noresume(rpm->kdev);
|
|
|
|
intel_runtime_pm_acquire(rpm, true);
|
|
|
|
return track_intel_runtime_pm_wakeref(rpm);
|
|
}
|
|
|
|
static void __intel_runtime_pm_put(struct intel_runtime_pm *rpm,
|
|
intel_wakeref_t wref,
|
|
bool wakelock)
|
|
{
|
|
struct device *kdev = rpm->kdev;
|
|
|
|
untrack_intel_runtime_pm_wakeref(rpm, wref);
|
|
|
|
intel_runtime_pm_release(rpm, wakelock);
|
|
|
|
pm_runtime_mark_last_busy(kdev);
|
|
pm_runtime_put_autosuspend(kdev);
|
|
}
|
|
|
|
/**
|
|
* intel_runtime_pm_put_raw - release a raw runtime pm reference
|
|
* @rpm: the intel_runtime_pm structure
|
|
* @wref: wakeref acquired for the reference that is being released
|
|
*
|
|
* This function drops the device-level runtime pm reference obtained by
|
|
* intel_runtime_pm_get_raw() and might power down the corresponding
|
|
* hardware block right away if this is the last reference.
|
|
*/
|
|
void
|
|
intel_runtime_pm_put_raw(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
|
|
{
|
|
__intel_runtime_pm_put(rpm, wref, false);
|
|
}
|
|
|
|
/**
|
|
* intel_runtime_pm_put_unchecked - release an unchecked runtime pm reference
|
|
* @rpm: the intel_runtime_pm structure
|
|
*
|
|
* This function drops the device-level runtime pm reference obtained by
|
|
* intel_runtime_pm_get() and might power down the corresponding
|
|
* hardware block right away if this is the last reference.
|
|
*
|
|
* This function exists only for historical reasons and should be avoided in
|
|
* new code, as the correctness of its use cannot be checked. Always use
|
|
* intel_runtime_pm_put() instead.
|
|
*/
|
|
void intel_runtime_pm_put_unchecked(struct intel_runtime_pm *rpm)
|
|
{
|
|
__intel_runtime_pm_put(rpm, INTEL_WAKEREF_DEF, true);
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
|
|
/**
|
|
* intel_runtime_pm_put - release a runtime pm reference
|
|
* @rpm: the intel_runtime_pm structure
|
|
* @wref: wakeref acquired for the reference that is being released
|
|
*
|
|
* This function drops the device-level runtime pm reference obtained by
|
|
* intel_runtime_pm_get() and might power down the corresponding
|
|
* hardware block right away if this is the last reference.
|
|
*/
|
|
void intel_runtime_pm_put(struct intel_runtime_pm *rpm, intel_wakeref_t wref)
|
|
{
|
|
__intel_runtime_pm_put(rpm, wref, true);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* intel_runtime_pm_enable - enable runtime pm
|
|
* @rpm: the intel_runtime_pm structure
|
|
*
|
|
* This function enables runtime pm at the end of the driver load sequence.
|
|
*
|
|
* Note that this function does currently not enable runtime pm for the
|
|
* subordinate display power domains. That is done by
|
|
* intel_power_domains_enable().
|
|
*/
|
|
void intel_runtime_pm_enable(struct intel_runtime_pm *rpm)
|
|
{
|
|
struct drm_i915_private *i915 = rpm_to_i915(rpm);
|
|
struct device *kdev = rpm->kdev;
|
|
|
|
/*
|
|
* Disable the system suspend direct complete optimization, which can
|
|
* leave the device suspended skipping the driver's suspend handlers
|
|
* if the device was already runtime suspended. This is needed due to
|
|
* the difference in our runtime and system suspend sequence and
|
|
* becaue the HDA driver may require us to enable the audio power
|
|
* domain during system suspend.
|
|
*/
|
|
dev_pm_set_driver_flags(kdev, DPM_FLAG_NO_DIRECT_COMPLETE);
|
|
|
|
pm_runtime_set_autosuspend_delay(kdev, 10000); /* 10s */
|
|
pm_runtime_mark_last_busy(kdev);
|
|
|
|
/*
|
|
* Take a permanent reference to disable the RPM functionality and drop
|
|
* it only when unloading the driver. Use the low level get/put helpers,
|
|
* so the driver's own RPM reference tracking asserts also work on
|
|
* platforms without RPM support.
|
|
*/
|
|
if (!rpm->available) {
|
|
int ret;
|
|
|
|
pm_runtime_dont_use_autosuspend(kdev);
|
|
ret = pm_runtime_get_sync(kdev);
|
|
drm_WARN(&i915->drm, ret < 0,
|
|
"pm_runtime_get_sync() failed: %d\n", ret);
|
|
} else {
|
|
pm_runtime_use_autosuspend(kdev);
|
|
}
|
|
|
|
/*
|
|
* FIXME: Temp hammer to keep autosupend disable on lmem supported platforms.
|
|
* As per PCIe specs 5.3.1.4.1, all iomem read write request over a PCIe
|
|
* function will be unsupported in case PCIe endpoint function is in D3.
|
|
* Let's keep i915 autosuspend control 'on' till we fix all known issue
|
|
* with lmem access in D3.
|
|
*/
|
|
if (!IS_DGFX(i915))
|
|
pm_runtime_allow(kdev);
|
|
|
|
/*
|
|
* The core calls the driver load handler with an RPM reference held.
|
|
* We drop that here and will reacquire it during unloading in
|
|
* intel_power_domains_fini().
|
|
*/
|
|
pm_runtime_put_autosuspend(kdev);
|
|
}
|
|
|
|
void intel_runtime_pm_disable(struct intel_runtime_pm *rpm)
|
|
{
|
|
struct drm_i915_private *i915 = rpm_to_i915(rpm);
|
|
struct device *kdev = rpm->kdev;
|
|
|
|
/* Transfer rpm ownership back to core */
|
|
drm_WARN(&i915->drm, pm_runtime_get_sync(kdev) < 0,
|
|
"Failed to pass rpm ownership back to core\n");
|
|
|
|
pm_runtime_dont_use_autosuspend(kdev);
|
|
|
|
if (!rpm->available)
|
|
pm_runtime_put(kdev);
|
|
}
|
|
|
|
void intel_runtime_pm_driver_release(struct intel_runtime_pm *rpm)
|
|
{
|
|
struct drm_i915_private *i915 = rpm_to_i915(rpm);
|
|
int count = atomic_read(&rpm->wakeref_count);
|
|
|
|
intel_wakeref_auto_fini(&rpm->userfault_wakeref);
|
|
|
|
drm_WARN(&i915->drm, count,
|
|
"i915 raw-wakerefs=%d wakelocks=%d on cleanup\n",
|
|
intel_rpm_raw_wakeref_count(count),
|
|
intel_rpm_wakelock_count(count));
|
|
}
|
|
|
|
void intel_runtime_pm_driver_last_release(struct intel_runtime_pm *rpm)
|
|
{
|
|
intel_runtime_pm_driver_release(rpm);
|
|
untrack_all_intel_runtime_pm_wakerefs(rpm);
|
|
}
|
|
|
|
void intel_runtime_pm_init_early(struct intel_runtime_pm *rpm)
|
|
{
|
|
struct drm_i915_private *i915 = rpm_to_i915(rpm);
|
|
struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
|
|
struct device *kdev = &pdev->dev;
|
|
|
|
rpm->kdev = kdev;
|
|
rpm->available = HAS_RUNTIME_PM(i915);
|
|
atomic_set(&rpm->wakeref_count, 0);
|
|
|
|
init_intel_runtime_pm_wakeref(rpm);
|
|
INIT_LIST_HEAD(&rpm->lmem_userfault_list);
|
|
spin_lock_init(&rpm->lmem_userfault_lock);
|
|
intel_wakeref_auto_init(&rpm->userfault_wakeref, i915);
|
|
}
|