JustOS/linux-6.13/tools/testing/selftests/signal/mangle_uc_sigmask.c
justuser 02e73b8cd9 up
2025-01-24 17:00:19 +03:00

185 lines
5.4 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2024 ARM Ltd.
*
* Author: Dev Jain <dev.jain@arm.com>
*
* Test describing a clear distinction between signal states - delivered and
* blocked, and their relation with ucontext.
*
* A process can request blocking of a signal by masking it into its set of
* blocked signals; such a signal, when sent to the process by the kernel,
* will get blocked by the process and it may later unblock it and take an
* action. At that point, the signal will be delivered.
*
* We test the following functionalities of the kernel:
*
* ucontext_t describes the interrupted context of the thread; this implies
* that, in case of registering a handler and catching the corresponding
* signal, that state is before what was jumping into the handler.
*
* The thread's mask of blocked signals can be permanently changed, i.e, not
* just during the execution of the handler, by mangling with uc_sigmask
* from inside the handler.
*
* Assume that we block the set of signals, S1, by sigaction(), and say, the
* signal for which the handler was installed, is S2. When S2 is sent to the
* program, it will be considered "delivered", since we will act on the
* signal and jump to the handler. Any instances of S1 or S2 raised, while the
* program is executing inside the handler, will be blocked; they will be
* delivered immediately upon termination of the handler.
*
* For standard signals (also see real-time signals in the man page), multiple
* blocked instances of the same signal are not queued; such a signal will
* be delivered just once.
*/
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <ucontext.h>
#include "../kselftest.h"
void handler_verify_ucontext(int signo, siginfo_t *info, void *uc)
{
int ret;
/* Kernel dumps ucontext with USR2 blocked */
ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGUSR2);
ksft_test_result(ret == 1, "USR2 blocked in ucontext\n");
/*
* USR2 is blocked; can be delivered neither here, nor after
* exit from handler
*/
if (raise(SIGUSR2))
ksft_exit_fail_perror("raise");
}
void handler_segv(int signo, siginfo_t *info, void *uc)
{
/*
* Three cases possible:
* 1. Program already terminated due to segmentation fault.
* 2. SEGV was blocked even after returning from handler_usr.
* 3. SEGV was delivered on returning from handler_usr.
* The last option must happen.
*/
ksft_test_result_pass("SEGV delivered\n");
}
static int cnt;
void handler_usr(int signo, siginfo_t *info, void *uc)
{
int ret;
/*
* Break out of infinite recursion caused by raise(SIGUSR1) invoked
* from inside the handler
*/
++cnt;
if (cnt > 1)
return;
/* SEGV blocked during handler execution, delivered on return */
if (raise(SIGSEGV))
ksft_exit_fail_perror("raise");
ksft_print_msg("SEGV bypassed successfully\n");
/*
* Signal responsible for handler invocation is blocked by default;
* delivered on return, leading to recursion
*/
if (raise(SIGUSR1))
ksft_exit_fail_perror("raise");
ksft_test_result(cnt == 1,
"USR1 is blocked, cannot invoke handler right now\n");
/* Raise USR1 again; only one instance must be delivered upon exit */
if (raise(SIGUSR1))
ksft_exit_fail_perror("raise");
/* SEGV has been blocked in sa_mask, but ucontext is empty */
ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGSEGV);
ksft_test_result(ret == 0, "SEGV not blocked in ucontext\n");
/* USR1 has been blocked, but ucontext is empty */
ret = sigismember(&(((ucontext_t *)uc)->uc_sigmask), SIGUSR1);
ksft_test_result(ret == 0, "USR1 not blocked in ucontext\n");
/*
* Mangle ucontext; this will be copied back into &current->blocked
* on return from the handler.
*/
if (sigaddset(&((ucontext_t *)uc)->uc_sigmask, SIGUSR2))
ksft_exit_fail_perror("sigaddset");
}
int main(int argc, char *argv[])
{
struct sigaction act, act2;
sigset_t set, oldset;
ksft_print_header();
ksft_set_plan(7);
act.sa_flags = SA_SIGINFO;
act.sa_sigaction = &handler_usr;
/* Add SEGV to blocked mask */
if (sigemptyset(&act.sa_mask) || sigaddset(&act.sa_mask, SIGSEGV)
|| (sigismember(&act.sa_mask, SIGSEGV) != 1))
ksft_exit_fail_msg("Cannot add SEGV to blocked mask\n");
if (sigaction(SIGUSR1, &act, NULL))
ksft_exit_fail_perror("Cannot install handler");
act2.sa_flags = SA_SIGINFO;
act2.sa_sigaction = &handler_segv;
if (sigaction(SIGSEGV, &act2, NULL))
ksft_exit_fail_perror("Cannot install handler");
/* Invoke handler */
if (raise(SIGUSR1))
ksft_exit_fail_perror("raise");
/* USR1 must not be queued */
ksft_test_result(cnt == 2, "handler invoked only twice\n");
/* Mangled ucontext implies USR2 is blocked for current thread */
if (raise(SIGUSR2))
ksft_exit_fail_perror("raise");
ksft_print_msg("USR2 bypassed successfully\n");
act.sa_sigaction = &handler_verify_ucontext;
if (sigaction(SIGUSR1, &act, NULL))
ksft_exit_fail_perror("Cannot install handler");
if (raise(SIGUSR1))
ksft_exit_fail_perror("raise");
/*
* Raising USR2 in handler_verify_ucontext is redundant since it
* is blocked
*/
ksft_print_msg("USR2 still blocked on return from handler\n");
/* Confirm USR2 blockage by sigprocmask() too */
if (sigemptyset(&set))
ksft_exit_fail_perror("sigemptyset");
if (sigprocmask(SIG_BLOCK, &set, &oldset))
ksft_exit_fail_perror("sigprocmask");
ksft_test_result(sigismember(&oldset, SIGUSR2) == 1,
"USR2 present in &current->blocked\n");
ksft_finished();
}