JustOS/linux-6.13/tools/testing/selftests/mm/guard-pages.c
justuser 02e73b8cd9 up
2025-01-24 17:00:19 +03:00

1244 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
#define _GNU_SOURCE
#include "../kselftest_harness.h"
#include <asm-generic/mman.h> /* Force the import of the tools version. */
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <linux/userfaultfd.h>
#include <setjmp.h>
#include <signal.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/uio.h>
#include <unistd.h>
/*
* Ignore the checkpatch warning, as per the C99 standard, section 7.14.1.1:
*
* "If the signal occurs other than as the result of calling the abort or raise
* function, the behavior is undefined if the signal handler refers to any
* object with static storage duration other than by assigning a value to an
* object declared as volatile sig_atomic_t"
*/
static volatile sig_atomic_t signal_jump_set;
static sigjmp_buf signal_jmp_buf;
/*
* Ignore the checkpatch warning, we must read from x but don't want to do
* anything with it in order to trigger a read page fault. We therefore must use
* volatile to stop the compiler from optimising this away.
*/
#define FORCE_READ(x) (*(volatile typeof(x) *)x)
static int userfaultfd(int flags)
{
return syscall(SYS_userfaultfd, flags);
}
static void handle_fatal(int c)
{
if (!signal_jump_set)
return;
siglongjmp(signal_jmp_buf, c);
}
static int pidfd_open(pid_t pid, unsigned int flags)
{
return syscall(SYS_pidfd_open, pid, flags);
}
/*
* Enable our signal catcher and try to read/write the specified buffer. The
* return value indicates whether the read/write succeeds without a fatal
* signal.
*/
static bool try_access_buf(char *ptr, bool write)
{
bool failed;
/* Tell signal handler to jump back here on fatal signal. */
signal_jump_set = true;
/* If a fatal signal arose, we will jump back here and failed is set. */
failed = sigsetjmp(signal_jmp_buf, 0) != 0;
if (!failed) {
if (write)
*ptr = 'x';
else
FORCE_READ(ptr);
}
signal_jump_set = false;
return !failed;
}
/* Try and read from a buffer, return true if no fatal signal. */
static bool try_read_buf(char *ptr)
{
return try_access_buf(ptr, false);
}
/* Try and write to a buffer, return true if no fatal signal. */
static bool try_write_buf(char *ptr)
{
return try_access_buf(ptr, true);
}
/*
* Try and BOTH read from AND write to a buffer, return true if BOTH operations
* succeed.
*/
static bool try_read_write_buf(char *ptr)
{
return try_read_buf(ptr) && try_write_buf(ptr);
}
FIXTURE(guard_pages)
{
unsigned long page_size;
};
FIXTURE_SETUP(guard_pages)
{
struct sigaction act = {
.sa_handler = &handle_fatal,
.sa_flags = SA_NODEFER,
};
sigemptyset(&act.sa_mask);
if (sigaction(SIGSEGV, &act, NULL))
ksft_exit_fail_perror("sigaction");
self->page_size = (unsigned long)sysconf(_SC_PAGESIZE);
};
FIXTURE_TEARDOWN(guard_pages)
{
struct sigaction act = {
.sa_handler = SIG_DFL,
.sa_flags = SA_NODEFER,
};
sigemptyset(&act.sa_mask);
sigaction(SIGSEGV, &act, NULL);
}
TEST_F(guard_pages, basic)
{
const unsigned long NUM_PAGES = 10;
const unsigned long page_size = self->page_size;
char *ptr;
int i;
ptr = mmap(NULL, NUM_PAGES * page_size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Trivially assert we can touch the first page. */
ASSERT_TRUE(try_read_write_buf(ptr));
ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
/* Establish that 1st page SIGSEGV's. */
ASSERT_FALSE(try_read_write_buf(ptr));
/* Ensure we can touch everything else.*/
for (i = 1; i < NUM_PAGES; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/* Establish a guard page at the end of the mapping. */
ASSERT_EQ(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size,
MADV_GUARD_INSTALL), 0);
/* Check that both guard pages result in SIGSEGV. */
ASSERT_FALSE(try_read_write_buf(ptr));
ASSERT_FALSE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size]));
/* Remove the first guard page. */
ASSERT_FALSE(madvise(ptr, page_size, MADV_GUARD_REMOVE));
/* Make sure we can touch it. */
ASSERT_TRUE(try_read_write_buf(ptr));
/* Remove the last guard page. */
ASSERT_FALSE(madvise(&ptr[(NUM_PAGES - 1) * page_size], page_size,
MADV_GUARD_REMOVE));
/* Make sure we can touch it. */
ASSERT_TRUE(try_read_write_buf(&ptr[(NUM_PAGES - 1) * page_size]));
/*
* Test setting a _range_ of pages, namely the first 3. The first of
* these be faulted in, so this also tests that we can install guard
* pages over backed pages.
*/
ASSERT_EQ(madvise(ptr, 3 * page_size, MADV_GUARD_INSTALL), 0);
/* Make sure they are all guard pages. */
for (i = 0; i < 3; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Make sure the rest are not. */
for (i = 3; i < NUM_PAGES; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/* Remove guard pages. */
ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0);
/* Now make sure we can touch everything. */
for (i = 0; i < NUM_PAGES; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/*
* Now remove all guard pages, make sure we don't remove existing
* entries.
*/
ASSERT_EQ(madvise(ptr, NUM_PAGES * page_size, MADV_GUARD_REMOVE), 0);
for (i = 0; i < NUM_PAGES * page_size; i += page_size) {
char chr = ptr[i];
ASSERT_EQ(chr, 'x');
}
ASSERT_EQ(munmap(ptr, NUM_PAGES * page_size), 0);
}
/* Assert that operations applied across multiple VMAs work as expected. */
TEST_F(guard_pages, multi_vma)
{
const unsigned long page_size = self->page_size;
char *ptr_region, *ptr, *ptr1, *ptr2, *ptr3;
int i;
/* Reserve a 100 page region over which we can install VMAs. */
ptr_region = mmap(NULL, 100 * page_size, PROT_NONE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_region, MAP_FAILED);
/* Place a VMA of 10 pages size at the start of the region. */
ptr1 = mmap(ptr_region, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr1, MAP_FAILED);
/* Place a VMA of 5 pages size 50 pages into the region. */
ptr2 = mmap(&ptr_region[50 * page_size], 5 * page_size,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr2, MAP_FAILED);
/* Place a VMA of 20 pages size at the end of the region. */
ptr3 = mmap(&ptr_region[80 * page_size], 20 * page_size,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr3, MAP_FAILED);
/* Unmap gaps. */
ASSERT_EQ(munmap(&ptr_region[10 * page_size], 40 * page_size), 0);
ASSERT_EQ(munmap(&ptr_region[55 * page_size], 25 * page_size), 0);
/*
* We end up with VMAs like this:
*
* 0 10 .. 50 55 .. 80 100
* [---] [---] [---]
*/
/*
* Now mark the whole range as guard pages and make sure all VMAs are as
* such.
*/
/*
* madvise() is certifiable and lets you perform operations over gaps,
* everything works, but it indicates an error and errno is set to
* -ENOMEM. Also if anything runs out of memory it is set to
* -ENOMEM. You are meant to guess which is which.
*/
ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), -1);
ASSERT_EQ(errno, ENOMEM);
for (i = 0; i < 10; i++) {
char *curr = &ptr1[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
for (i = 0; i < 5; i++) {
char *curr = &ptr2[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
for (i = 0; i < 20; i++) {
char *curr = &ptr3[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Now remove guar pages over range and assert the opposite. */
ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), -1);
ASSERT_EQ(errno, ENOMEM);
for (i = 0; i < 10; i++) {
char *curr = &ptr1[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
for (i = 0; i < 5; i++) {
char *curr = &ptr2[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
for (i = 0; i < 20; i++) {
char *curr = &ptr3[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/* Now map incompatible VMAs in the gaps. */
ptr = mmap(&ptr_region[10 * page_size], 40 * page_size,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
ptr = mmap(&ptr_region[55 * page_size], 25 * page_size,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/*
* We end up with VMAs like this:
*
* 0 10 .. 50 55 .. 80 100
* [---][xxxx][---][xxxx][---]
*
* Where 'x' signifies VMAs that cannot be merged with those adjacent to
* them.
*/
/* Multiple VMAs adjacent to one another should result in no error. */
ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_INSTALL), 0);
for (i = 0; i < 100; i++) {
char *curr = &ptr_region[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
ASSERT_EQ(madvise(ptr_region, 100 * page_size, MADV_GUARD_REMOVE), 0);
for (i = 0; i < 100; i++) {
char *curr = &ptr_region[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr_region, 100 * page_size), 0);
}
/*
* Assert that batched operations performed using process_madvise() work as
* expected.
*/
TEST_F(guard_pages, process_madvise)
{
const unsigned long page_size = self->page_size;
pid_t pid = getpid();
int pidfd = pidfd_open(pid, 0);
char *ptr_region, *ptr1, *ptr2, *ptr3;
ssize_t count;
struct iovec vec[6];
ASSERT_NE(pidfd, -1);
/* Reserve region to map over. */
ptr_region = mmap(NULL, 100 * page_size, PROT_NONE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_region, MAP_FAILED);
/*
* 10 pages offset 1 page into reserve region. We MAP_POPULATE so we
* overwrite existing entries and test this code path against
* overwriting existing entries.
*/
ptr1 = mmap(&ptr_region[page_size], 10 * page_size,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE | MAP_POPULATE, -1, 0);
ASSERT_NE(ptr1, MAP_FAILED);
/* We want guard markers at start/end of each VMA. */
vec[0].iov_base = ptr1;
vec[0].iov_len = page_size;
vec[1].iov_base = &ptr1[9 * page_size];
vec[1].iov_len = page_size;
/* 5 pages offset 50 pages into reserve region. */
ptr2 = mmap(&ptr_region[50 * page_size], 5 * page_size,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr2, MAP_FAILED);
vec[2].iov_base = ptr2;
vec[2].iov_len = page_size;
vec[3].iov_base = &ptr2[4 * page_size];
vec[3].iov_len = page_size;
/* 20 pages offset 79 pages into reserve region. */
ptr3 = mmap(&ptr_region[79 * page_size], 20 * page_size,
PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr3, MAP_FAILED);
vec[4].iov_base = ptr3;
vec[4].iov_len = page_size;
vec[5].iov_base = &ptr3[19 * page_size];
vec[5].iov_len = page_size;
/* Free surrounding VMAs. */
ASSERT_EQ(munmap(ptr_region, page_size), 0);
ASSERT_EQ(munmap(&ptr_region[11 * page_size], 39 * page_size), 0);
ASSERT_EQ(munmap(&ptr_region[55 * page_size], 24 * page_size), 0);
ASSERT_EQ(munmap(&ptr_region[99 * page_size], page_size), 0);
/* Now guard in one step. */
count = process_madvise(pidfd, vec, 6, MADV_GUARD_INSTALL, 0);
/* OK we don't have permission to do this, skip. */
if (count == -1 && errno == EPERM)
ksft_exit_skip("No process_madvise() permissions, try running as root.\n");
/* Returns the number of bytes advised. */
ASSERT_EQ(count, 6 * page_size);
/* Now make sure the guarding was applied. */
ASSERT_FALSE(try_read_write_buf(ptr1));
ASSERT_FALSE(try_read_write_buf(&ptr1[9 * page_size]));
ASSERT_FALSE(try_read_write_buf(ptr2));
ASSERT_FALSE(try_read_write_buf(&ptr2[4 * page_size]));
ASSERT_FALSE(try_read_write_buf(ptr3));
ASSERT_FALSE(try_read_write_buf(&ptr3[19 * page_size]));
/* Now do the same with unguard... */
count = process_madvise(pidfd, vec, 6, MADV_GUARD_REMOVE, 0);
/* ...and everything should now succeed. */
ASSERT_TRUE(try_read_write_buf(ptr1));
ASSERT_TRUE(try_read_write_buf(&ptr1[9 * page_size]));
ASSERT_TRUE(try_read_write_buf(ptr2));
ASSERT_TRUE(try_read_write_buf(&ptr2[4 * page_size]));
ASSERT_TRUE(try_read_write_buf(ptr3));
ASSERT_TRUE(try_read_write_buf(&ptr3[19 * page_size]));
/* Cleanup. */
ASSERT_EQ(munmap(ptr1, 10 * page_size), 0);
ASSERT_EQ(munmap(ptr2, 5 * page_size), 0);
ASSERT_EQ(munmap(ptr3, 20 * page_size), 0);
close(pidfd);
}
/* Assert that unmapping ranges does not leave guard markers behind. */
TEST_F(guard_pages, munmap)
{
const unsigned long page_size = self->page_size;
char *ptr, *ptr_new1, *ptr_new2;
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Guard first and last pages. */
ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
ASSERT_EQ(madvise(&ptr[9 * page_size], page_size, MADV_GUARD_INSTALL), 0);
/* Assert that they are guarded. */
ASSERT_FALSE(try_read_write_buf(ptr));
ASSERT_FALSE(try_read_write_buf(&ptr[9 * page_size]));
/* Unmap them. */
ASSERT_EQ(munmap(ptr, page_size), 0);
ASSERT_EQ(munmap(&ptr[9 * page_size], page_size), 0);
/* Map over them.*/
ptr_new1 = mmap(ptr, page_size, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_new1, MAP_FAILED);
ptr_new2 = mmap(&ptr[9 * page_size], page_size, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_new2, MAP_FAILED);
/* Assert that they are now not guarded. */
ASSERT_TRUE(try_read_write_buf(ptr_new1));
ASSERT_TRUE(try_read_write_buf(ptr_new2));
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Assert that mprotect() operations have no bearing on guard markers. */
TEST_F(guard_pages, mprotect)
{
const unsigned long page_size = self->page_size;
char *ptr;
int i;
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Guard the middle of the range. */
ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size,
MADV_GUARD_INSTALL), 0);
/* Assert that it is indeed guarded. */
ASSERT_FALSE(try_read_write_buf(&ptr[5 * page_size]));
ASSERT_FALSE(try_read_write_buf(&ptr[6 * page_size]));
/* Now make these pages read-only. */
ASSERT_EQ(mprotect(&ptr[5 * page_size], 2 * page_size, PROT_READ), 0);
/* Make sure the range is still guarded. */
ASSERT_FALSE(try_read_buf(&ptr[5 * page_size]));
ASSERT_FALSE(try_read_buf(&ptr[6 * page_size]));
/* Make sure we can guard again without issue.*/
ASSERT_EQ(madvise(&ptr[5 * page_size], 2 * page_size,
MADV_GUARD_INSTALL), 0);
/* Make sure the range is, yet again, still guarded. */
ASSERT_FALSE(try_read_buf(&ptr[5 * page_size]));
ASSERT_FALSE(try_read_buf(&ptr[6 * page_size]));
/* Now unguard the whole range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
/* Make sure the whole range is readable. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_buf(curr));
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Split and merge VMAs and make sure guard pages still behave. */
TEST_F(guard_pages, split_merge)
{
const unsigned long page_size = self->page_size;
char *ptr, *ptr_new;
int i;
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Guard the whole range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
/* Make sure the whole range is guarded. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Now unmap some pages in the range so we split. */
ASSERT_EQ(munmap(&ptr[2 * page_size], page_size), 0);
ASSERT_EQ(munmap(&ptr[5 * page_size], page_size), 0);
ASSERT_EQ(munmap(&ptr[8 * page_size], page_size), 0);
/* Make sure the remaining ranges are guarded post-split. */
for (i = 0; i < 2; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
for (i = 2; i < 5; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
for (i = 6; i < 8; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
for (i = 9; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Now map them again - the unmap will have cleared the guards. */
ptr_new = mmap(&ptr[2 * page_size], page_size, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_new, MAP_FAILED);
ptr_new = mmap(&ptr[5 * page_size], page_size, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_new, MAP_FAILED);
ptr_new = mmap(&ptr[8 * page_size], page_size, PROT_READ | PROT_WRITE,
MAP_FIXED | MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_new, MAP_FAILED);
/* Now make sure guard pages are established. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
bool result = try_read_write_buf(curr);
bool expect_true = i == 2 || i == 5 || i == 8;
ASSERT_TRUE(expect_true ? result : !result);
}
/* Now guard everything again. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
/* Make sure the whole range is guarded. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Now split the range into three. */
ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0);
ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0);
/* Make sure the whole range is guarded for read. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_buf(curr));
}
/* Now reset protection bits so we merge the whole thing. */
ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0);
ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size,
PROT_READ | PROT_WRITE), 0);
/* Make sure the whole range is still guarded. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Split range into 3 again... */
ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ), 0);
ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size, PROT_READ), 0);
/* ...and unguard the whole range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
/* Make sure the whole range is remedied for read. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_buf(curr));
}
/* Merge them again. */
ASSERT_EQ(mprotect(ptr, 3 * page_size, PROT_READ | PROT_WRITE), 0);
ASSERT_EQ(mprotect(&ptr[7 * page_size], 3 * page_size,
PROT_READ | PROT_WRITE), 0);
/* Now ensure the merged range is remedied for read/write. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Assert that MADV_DONTNEED does not remove guard markers. */
TEST_F(guard_pages, dontneed)
{
const unsigned long page_size = self->page_size;
char *ptr;
int i;
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Back the whole range. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
*curr = 'y';
}
/* Guard every other page. */
for (i = 0; i < 10; i += 2) {
char *curr = &ptr[i * page_size];
int res = madvise(curr, page_size, MADV_GUARD_INSTALL);
ASSERT_EQ(res, 0);
}
/* Indicate that we don't need any of the range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_DONTNEED), 0);
/* Check to ensure guard markers are still in place. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
bool result = try_read_buf(curr);
if (i % 2 == 0) {
ASSERT_FALSE(result);
} else {
ASSERT_TRUE(result);
/* Make sure we really did get reset to zero page. */
ASSERT_EQ(*curr, '\0');
}
/* Now write... */
result = try_write_buf(&ptr[i * page_size]);
/* ...and make sure same result. */
ASSERT_TRUE(i % 2 != 0 ? result : !result);
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Assert that mlock()'ed pages work correctly with guard markers. */
TEST_F(guard_pages, mlock)
{
const unsigned long page_size = self->page_size;
char *ptr;
int i;
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Populate. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
*curr = 'y';
}
/* Lock. */
ASSERT_EQ(mlock(ptr, 10 * page_size), 0);
/* Now try to guard, should fail with EINVAL. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), -1);
ASSERT_EQ(errno, EINVAL);
/* OK unlock. */
ASSERT_EQ(munlock(ptr, 10 * page_size), 0);
/* Guard first half of range, should now succeed. */
ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
/* Make sure guard works. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
bool result = try_read_write_buf(curr);
if (i < 5) {
ASSERT_FALSE(result);
} else {
ASSERT_TRUE(result);
ASSERT_EQ(*curr, 'x');
}
}
/*
* Now lock the latter part of the range. We can't lock the guard pages,
* as this would result in the pages being populated and the guarding
* would cause this to error out.
*/
ASSERT_EQ(mlock(&ptr[5 * page_size], 5 * page_size), 0);
/*
* Now remove guard pages, we permit mlock()'d ranges to have guard
* pages removed as it is a non-destructive operation.
*/
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
/* Now check that no guard pages remain. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/*
* Assert that moving, extending and shrinking memory via mremap() retains
* guard markers where possible.
*
* - Moving a mapping alone should retain markers as they are.
*/
TEST_F(guard_pages, mremap_move)
{
const unsigned long page_size = self->page_size;
char *ptr, *ptr_new;
/* Map 5 pages. */
ptr = mmap(NULL, 5 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Place guard markers at both ends of the 5 page span. */
ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
/* Make sure the guard pages are in effect. */
ASSERT_FALSE(try_read_write_buf(ptr));
ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
/* Map a new region we will move this range into. Doing this ensures
* that we have reserved a range to map into.
*/
ptr_new = mmap(NULL, 5 * page_size, PROT_NONE, MAP_ANON | MAP_PRIVATE,
-1, 0);
ASSERT_NE(ptr_new, MAP_FAILED);
ASSERT_EQ(mremap(ptr, 5 * page_size, 5 * page_size,
MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new), ptr_new);
/* Make sure the guard markers are retained. */
ASSERT_FALSE(try_read_write_buf(ptr_new));
ASSERT_FALSE(try_read_write_buf(&ptr_new[4 * page_size]));
/*
* Clean up - we only need reference the new pointer as we overwrote the
* PROT_NONE range and moved the existing one.
*/
munmap(ptr_new, 5 * page_size);
}
/*
* Assert that moving, extending and shrinking memory via mremap() retains
* guard markers where possible.
*
* Expanding should retain guard pages, only now in different position. The user
* will have to remove guard pages manually to fix up (they'd have to do the
* same if it were a PROT_NONE mapping).
*/
TEST_F(guard_pages, mremap_expand)
{
const unsigned long page_size = self->page_size;
char *ptr, *ptr_new;
/* Map 10 pages... */
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* ...But unmap the last 5 so we can ensure we can expand into them. */
ASSERT_EQ(munmap(&ptr[5 * page_size], 5 * page_size), 0);
/* Place guard markers at both ends of the 5 page span. */
ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
/* Make sure the guarding is in effect. */
ASSERT_FALSE(try_read_write_buf(ptr));
ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
/* Now expand to 10 pages. */
ptr = mremap(ptr, 5 * page_size, 10 * page_size, 0);
ASSERT_NE(ptr, MAP_FAILED);
/*
* Make sure the guard markers are retained in their original positions.
*/
ASSERT_FALSE(try_read_write_buf(ptr));
ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
/* Reserve a region which we can move to and expand into. */
ptr_new = mmap(NULL, 20 * page_size, PROT_NONE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr_new, MAP_FAILED);
/* Now move and expand into it. */
ptr = mremap(ptr, 10 * page_size, 20 * page_size,
MREMAP_MAYMOVE | MREMAP_FIXED, ptr_new);
ASSERT_EQ(ptr, ptr_new);
/*
* Again, make sure the guard markers are retained in their original positions.
*/
ASSERT_FALSE(try_read_write_buf(ptr));
ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
/*
* A real user would have to remove guard markers, but would reasonably
* expect all characteristics of the mapping to be retained, including
* guard markers.
*/
/* Cleanup. */
munmap(ptr, 20 * page_size);
}
/*
* Assert that moving, extending and shrinking memory via mremap() retains
* guard markers where possible.
*
* Shrinking will result in markers that are shrunk over being removed. Again,
* if the user were using a PROT_NONE mapping they'd have to manually fix this
* up also so this is OK.
*/
TEST_F(guard_pages, mremap_shrink)
{
const unsigned long page_size = self->page_size;
char *ptr;
int i;
/* Map 5 pages. */
ptr = mmap(NULL, 5 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Place guard markers at both ends of the 5 page span. */
ASSERT_EQ(madvise(ptr, page_size, MADV_GUARD_INSTALL), 0);
ASSERT_EQ(madvise(&ptr[4 * page_size], page_size, MADV_GUARD_INSTALL), 0);
/* Make sure the guarding is in effect. */
ASSERT_FALSE(try_read_write_buf(ptr));
ASSERT_FALSE(try_read_write_buf(&ptr[4 * page_size]));
/* Now shrink to 3 pages. */
ptr = mremap(ptr, 5 * page_size, 3 * page_size, MREMAP_MAYMOVE);
ASSERT_NE(ptr, MAP_FAILED);
/* We expect the guard marker at the start to be retained... */
ASSERT_FALSE(try_read_write_buf(ptr));
/* ...But remaining pages will not have guard markers. */
for (i = 1; i < 3; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/*
* As with expansion, a real user would have to remove guard pages and
* fixup. But you'd have to do similar manual things with PROT_NONE
* mappings too.
*/
/*
* If we expand back to the original size, the end marker will, of
* course, no longer be present.
*/
ptr = mremap(ptr, 3 * page_size, 5 * page_size, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Again, we expect the guard marker at the start to be retained... */
ASSERT_FALSE(try_read_write_buf(ptr));
/* ...But remaining pages will not have guard markers. */
for (i = 1; i < 5; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
/* Cleanup. */
munmap(ptr, 5 * page_size);
}
/*
* Assert that forking a process with VMAs that do not have VM_WIPEONFORK set
* retain guard pages.
*/
TEST_F(guard_pages, fork)
{
const unsigned long page_size = self->page_size;
char *ptr;
pid_t pid;
int i;
/* Map 10 pages. */
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Establish guard apges in the first 5 pages. */
ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
pid = fork();
ASSERT_NE(pid, -1);
if (!pid) {
/* This is the child process now. */
/* Assert that the guarding is in effect. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
bool result = try_read_write_buf(curr);
ASSERT_TRUE(i >= 5 ? result : !result);
}
/* Now unguard the range.*/
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_REMOVE), 0);
exit(0);
}
/* Parent process. */
/* Parent simply waits on child. */
waitpid(pid, NULL, 0);
/* Child unguard does not impact parent page table state. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
bool result = try_read_write_buf(curr);
ASSERT_TRUE(i >= 5 ? result : !result);
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/*
* Assert that forking a process with VMAs that do have VM_WIPEONFORK set
* behave as expected.
*/
TEST_F(guard_pages, fork_wipeonfork)
{
const unsigned long page_size = self->page_size;
char *ptr;
pid_t pid;
int i;
/* Map 10 pages. */
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Mark wipe on fork. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_WIPEONFORK), 0);
/* Guard the first 5 pages. */
ASSERT_EQ(madvise(ptr, 5 * page_size, MADV_GUARD_INSTALL), 0);
pid = fork();
ASSERT_NE(pid, -1);
if (!pid) {
/* This is the child process now. */
/* Guard will have been wiped. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_TRUE(try_read_write_buf(curr));
}
exit(0);
}
/* Parent process. */
waitpid(pid, NULL, 0);
/* Guard markers should be in effect.*/
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
bool result = try_read_write_buf(curr);
ASSERT_TRUE(i >= 5 ? result : !result);
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Ensure that MADV_FREE retains guard entries as expected. */
TEST_F(guard_pages, lazyfree)
{
const unsigned long page_size = self->page_size;
char *ptr;
int i;
/* Map 10 pages. */
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Guard range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
/* Ensure guarded. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Lazyfree range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_FREE), 0);
/* This should leave the guard markers in place. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Ensure that MADV_POPULATE_READ, MADV_POPULATE_WRITE behave as expected. */
TEST_F(guard_pages, populate)
{
const unsigned long page_size = self->page_size;
char *ptr;
/* Map 10 pages. */
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Guard range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
/* Populate read should error out... */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_READ), -1);
ASSERT_EQ(errno, EFAULT);
/* ...as should populate write. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_POPULATE_WRITE), -1);
ASSERT_EQ(errno, EFAULT);
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Ensure that MADV_COLD, MADV_PAGEOUT do not remove guard markers. */
TEST_F(guard_pages, cold_pageout)
{
const unsigned long page_size = self->page_size;
char *ptr;
int i;
/* Map 10 pages. */
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Guard range. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
/* Ensured guarded. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Now mark cold. This should have no impact on guard markers. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_COLD), 0);
/* Should remain guarded. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* OK, now page out. This should equally, have no effect on markers. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_PAGEOUT), 0);
/* Should remain guarded. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Cleanup. */
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
/* Ensure that guard pages do not break userfaultd. */
TEST_F(guard_pages, uffd)
{
const unsigned long page_size = self->page_size;
int uffd;
char *ptr;
int i;
struct uffdio_api api = {
.api = UFFD_API,
.features = 0,
};
struct uffdio_register reg;
struct uffdio_range range;
/* Set up uffd. */
uffd = userfaultfd(0);
if (uffd == -1 && errno == EPERM)
ksft_exit_skip("No userfaultfd permissions, try running as root.\n");
ASSERT_NE(uffd, -1);
ASSERT_EQ(ioctl(uffd, UFFDIO_API, &api), 0);
/* Map 10 pages. */
ptr = mmap(NULL, 10 * page_size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
ASSERT_NE(ptr, MAP_FAILED);
/* Register the range with uffd. */
range.start = (unsigned long)ptr;
range.len = 10 * page_size;
reg.range = range;
reg.mode = UFFDIO_REGISTER_MODE_MISSING;
ASSERT_EQ(ioctl(uffd, UFFDIO_REGISTER, &reg), 0);
/* Guard the range. This should not trigger the uffd. */
ASSERT_EQ(madvise(ptr, 10 * page_size, MADV_GUARD_INSTALL), 0);
/* The guarding should behave as usual with no uffd intervention. */
for (i = 0; i < 10; i++) {
char *curr = &ptr[i * page_size];
ASSERT_FALSE(try_read_write_buf(curr));
}
/* Cleanup. */
ASSERT_EQ(ioctl(uffd, UFFDIO_UNREGISTER, &range), 0);
close(uffd);
ASSERT_EQ(munmap(ptr, 10 * page_size), 0);
}
TEST_HARNESS_MAIN