738 lines
20 KiB
C
738 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Device tree based initialization code for reserved memory.
|
|
*
|
|
* Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
|
|
* Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
|
|
* http://www.samsung.com
|
|
* Author: Marek Szyprowski <m.szyprowski@samsung.com>
|
|
* Author: Josh Cartwright <joshc@codeaurora.org>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "OF: reserved mem: " fmt
|
|
|
|
#include <linux/err.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/kmemleak.h>
|
|
#include <linux/cma.h>
|
|
|
|
#include "of_private.h"
|
|
|
|
static struct reserved_mem reserved_mem_array[MAX_RESERVED_REGIONS] __initdata;
|
|
static struct reserved_mem *reserved_mem __refdata = reserved_mem_array;
|
|
static int total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
|
|
static int reserved_mem_count;
|
|
|
|
static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
|
|
phys_addr_t *res_base)
|
|
{
|
|
phys_addr_t base;
|
|
int err = 0;
|
|
|
|
end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
|
|
align = !align ? SMP_CACHE_BYTES : align;
|
|
base = memblock_phys_alloc_range(size, align, start, end);
|
|
if (!base)
|
|
return -ENOMEM;
|
|
|
|
*res_base = base;
|
|
if (nomap) {
|
|
err = memblock_mark_nomap(base, size);
|
|
if (err)
|
|
memblock_phys_free(base, size);
|
|
}
|
|
|
|
kmemleak_ignore_phys(base);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* alloc_reserved_mem_array() - allocate memory for the reserved_mem
|
|
* array using memblock
|
|
*
|
|
* This function is used to allocate memory for the reserved_mem
|
|
* array according to the total number of reserved memory regions
|
|
* defined in the DT.
|
|
* After the new array is allocated, the information stored in
|
|
* the initial static array is copied over to this new array and
|
|
* the new array is used from this point on.
|
|
*/
|
|
static void __init alloc_reserved_mem_array(void)
|
|
{
|
|
struct reserved_mem *new_array;
|
|
size_t alloc_size, copy_size, memset_size;
|
|
|
|
alloc_size = array_size(total_reserved_mem_cnt, sizeof(*new_array));
|
|
if (alloc_size == SIZE_MAX) {
|
|
pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
|
|
return;
|
|
}
|
|
|
|
new_array = memblock_alloc(alloc_size, SMP_CACHE_BYTES);
|
|
if (!new_array) {
|
|
pr_err("Failed to allocate memory for reserved_mem array with err: %d", -ENOMEM);
|
|
return;
|
|
}
|
|
|
|
copy_size = array_size(reserved_mem_count, sizeof(*new_array));
|
|
if (copy_size == SIZE_MAX) {
|
|
memblock_free(new_array, alloc_size);
|
|
total_reserved_mem_cnt = MAX_RESERVED_REGIONS;
|
|
pr_err("Failed to allocate memory for reserved_mem array with err: %d", -EOVERFLOW);
|
|
return;
|
|
}
|
|
|
|
memset_size = alloc_size - copy_size;
|
|
|
|
memcpy(new_array, reserved_mem, copy_size);
|
|
memset(new_array + reserved_mem_count, 0, memset_size);
|
|
|
|
reserved_mem = new_array;
|
|
}
|
|
|
|
static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
|
|
/*
|
|
* fdt_reserved_mem_save_node() - save fdt node for second pass initialization
|
|
*/
|
|
static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
|
|
phys_addr_t base, phys_addr_t size)
|
|
{
|
|
struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
|
|
|
|
if (reserved_mem_count == total_reserved_mem_cnt) {
|
|
pr_err("not enough space for all defined regions.\n");
|
|
return;
|
|
}
|
|
|
|
rmem->fdt_node = node;
|
|
rmem->name = uname;
|
|
rmem->base = base;
|
|
rmem->size = size;
|
|
|
|
/* Call the region specific initialization function */
|
|
fdt_init_reserved_mem_node(rmem);
|
|
|
|
reserved_mem_count++;
|
|
return;
|
|
}
|
|
|
|
static int __init early_init_dt_reserve_memory(phys_addr_t base,
|
|
phys_addr_t size, bool nomap)
|
|
{
|
|
if (nomap) {
|
|
/*
|
|
* If the memory is already reserved (by another region), we
|
|
* should not allow it to be marked nomap, but don't worry
|
|
* if the region isn't memory as it won't be mapped.
|
|
*/
|
|
if (memblock_overlaps_region(&memblock.memory, base, size) &&
|
|
memblock_is_region_reserved(base, size))
|
|
return -EBUSY;
|
|
|
|
return memblock_mark_nomap(base, size);
|
|
}
|
|
return memblock_reserve(base, size);
|
|
}
|
|
|
|
/*
|
|
* __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
|
|
*/
|
|
static int __init __reserved_mem_reserve_reg(unsigned long node,
|
|
const char *uname)
|
|
{
|
|
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
|
|
phys_addr_t base, size;
|
|
int len;
|
|
const __be32 *prop;
|
|
bool nomap;
|
|
|
|
prop = of_get_flat_dt_prop(node, "reg", &len);
|
|
if (!prop)
|
|
return -ENOENT;
|
|
|
|
if (len && len % t_len != 0) {
|
|
pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
|
|
uname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
|
|
|
|
while (len >= t_len) {
|
|
base = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
|
size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
|
|
|
if (size &&
|
|
early_init_dt_reserve_memory(base, size, nomap) == 0)
|
|
pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
|
|
uname, &base, (unsigned long)(size / SZ_1M));
|
|
else
|
|
pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
|
|
uname, &base, (unsigned long)(size / SZ_1M));
|
|
|
|
len -= t_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* __reserved_mem_check_root() - check if #size-cells, #address-cells provided
|
|
* in /reserved-memory matches the values supported by the current implementation,
|
|
* also check if ranges property has been provided
|
|
*/
|
|
static int __init __reserved_mem_check_root(unsigned long node)
|
|
{
|
|
const __be32 *prop;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "ranges", NULL);
|
|
if (!prop)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static void __init __rmem_check_for_overlap(void);
|
|
|
|
/**
|
|
* fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
|
|
* reserved memory regions.
|
|
*
|
|
* This function is used to scan through the DT and store the
|
|
* information for the reserved memory regions that are defined using
|
|
* the "reg" property. The region node number, name, base address, and
|
|
* size are all stored in the reserved_mem array by calling the
|
|
* fdt_reserved_mem_save_node() function.
|
|
*/
|
|
void __init fdt_scan_reserved_mem_reg_nodes(void)
|
|
{
|
|
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
|
|
const void *fdt = initial_boot_params;
|
|
phys_addr_t base, size;
|
|
const __be32 *prop;
|
|
int node, child;
|
|
int len;
|
|
|
|
if (!fdt)
|
|
return;
|
|
|
|
node = fdt_path_offset(fdt, "/reserved-memory");
|
|
if (node < 0) {
|
|
pr_info("Reserved memory: No reserved-memory node in the DT\n");
|
|
return;
|
|
}
|
|
|
|
/* Attempt dynamic allocation of a new reserved_mem array */
|
|
alloc_reserved_mem_array();
|
|
|
|
if (__reserved_mem_check_root(node)) {
|
|
pr_err("Reserved memory: unsupported node format, ignoring\n");
|
|
return;
|
|
}
|
|
|
|
fdt_for_each_subnode(child, fdt, node) {
|
|
const char *uname;
|
|
|
|
prop = of_get_flat_dt_prop(child, "reg", &len);
|
|
if (!prop)
|
|
continue;
|
|
if (!of_fdt_device_is_available(fdt, child))
|
|
continue;
|
|
|
|
uname = fdt_get_name(fdt, child, NULL);
|
|
if (len && len % t_len != 0) {
|
|
pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
|
|
uname);
|
|
continue;
|
|
}
|
|
base = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
|
size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
|
|
|
if (size)
|
|
fdt_reserved_mem_save_node(child, uname, base, size);
|
|
}
|
|
|
|
/* check for overlapping reserved regions */
|
|
__rmem_check_for_overlap();
|
|
}
|
|
|
|
static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
|
|
|
|
/*
|
|
* fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
|
|
*/
|
|
int __init fdt_scan_reserved_mem(void)
|
|
{
|
|
int node, child;
|
|
int dynamic_nodes_cnt = 0, count = 0;
|
|
int dynamic_nodes[MAX_RESERVED_REGIONS];
|
|
const void *fdt = initial_boot_params;
|
|
|
|
node = fdt_path_offset(fdt, "/reserved-memory");
|
|
if (node < 0)
|
|
return -ENODEV;
|
|
|
|
if (__reserved_mem_check_root(node) != 0) {
|
|
pr_err("Reserved memory: unsupported node format, ignoring\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
fdt_for_each_subnode(child, fdt, node) {
|
|
const char *uname;
|
|
int err;
|
|
|
|
if (!of_fdt_device_is_available(fdt, child))
|
|
continue;
|
|
|
|
uname = fdt_get_name(fdt, child, NULL);
|
|
|
|
err = __reserved_mem_reserve_reg(child, uname);
|
|
if (!err)
|
|
count++;
|
|
/*
|
|
* Save the nodes for the dynamically-placed regions
|
|
* into an array which will be used for allocation right
|
|
* after all the statically-placed regions are reserved
|
|
* or marked as no-map. This is done to avoid dynamically
|
|
* allocating from one of the statically-placed regions.
|
|
*/
|
|
if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
|
|
dynamic_nodes[dynamic_nodes_cnt] = child;
|
|
dynamic_nodes_cnt++;
|
|
}
|
|
}
|
|
for (int i = 0; i < dynamic_nodes_cnt; i++) {
|
|
const char *uname;
|
|
int err;
|
|
|
|
child = dynamic_nodes[i];
|
|
uname = fdt_get_name(fdt, child, NULL);
|
|
err = __reserved_mem_alloc_size(child, uname);
|
|
if (!err)
|
|
count++;
|
|
}
|
|
total_reserved_mem_cnt = count;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* __reserved_mem_alloc_in_range() - allocate reserved memory described with
|
|
* 'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
|
|
* reserved regions to keep the reserved memory contiguous if possible.
|
|
*/
|
|
static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
|
|
phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
|
|
phys_addr_t *res_base)
|
|
{
|
|
bool prev_bottom_up = memblock_bottom_up();
|
|
bool bottom_up = false, top_down = false;
|
|
int ret, i;
|
|
|
|
for (i = 0; i < reserved_mem_count; i++) {
|
|
struct reserved_mem *rmem = &reserved_mem[i];
|
|
|
|
/* Skip regions that were not reserved yet */
|
|
if (rmem->size == 0)
|
|
continue;
|
|
|
|
/*
|
|
* If range starts next to an existing reservation, use bottom-up:
|
|
* |....RRRR................RRRRRRRR..............|
|
|
* --RRRR------
|
|
*/
|
|
if (start >= rmem->base && start <= (rmem->base + rmem->size))
|
|
bottom_up = true;
|
|
|
|
/*
|
|
* If range ends next to an existing reservation, use top-down:
|
|
* |....RRRR................RRRRRRRR..............|
|
|
* -------RRRR-----
|
|
*/
|
|
if (end >= rmem->base && end <= (rmem->base + rmem->size))
|
|
top_down = true;
|
|
}
|
|
|
|
/* Change setting only if either bottom-up or top-down was selected */
|
|
if (bottom_up != top_down)
|
|
memblock_set_bottom_up(bottom_up);
|
|
|
|
ret = early_init_dt_alloc_reserved_memory_arch(size, align,
|
|
start, end, nomap, res_base);
|
|
|
|
/* Restore old setting if needed */
|
|
if (bottom_up != top_down)
|
|
memblock_set_bottom_up(prev_bottom_up);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __reserved_mem_alloc_size() - allocate reserved memory described by
|
|
* 'size', 'alignment' and 'alloc-ranges' properties.
|
|
*/
|
|
static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
|
|
{
|
|
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
|
|
phys_addr_t start = 0, end = 0;
|
|
phys_addr_t base = 0, align = 0, size;
|
|
int len;
|
|
const __be32 *prop;
|
|
bool nomap;
|
|
int ret;
|
|
|
|
prop = of_get_flat_dt_prop(node, "size", &len);
|
|
if (!prop)
|
|
return -EINVAL;
|
|
|
|
if (len != dt_root_size_cells * sizeof(__be32)) {
|
|
pr_err("invalid size property in '%s' node.\n", uname);
|
|
return -EINVAL;
|
|
}
|
|
size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
|
|
|
prop = of_get_flat_dt_prop(node, "alignment", &len);
|
|
if (prop) {
|
|
if (len != dt_root_addr_cells * sizeof(__be32)) {
|
|
pr_err("invalid alignment property in '%s' node.\n",
|
|
uname);
|
|
return -EINVAL;
|
|
}
|
|
align = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
|
}
|
|
|
|
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
|
|
|
|
/* Need adjust the alignment to satisfy the CMA requirement */
|
|
if (IS_ENABLED(CONFIG_CMA)
|
|
&& of_flat_dt_is_compatible(node, "shared-dma-pool")
|
|
&& of_get_flat_dt_prop(node, "reusable", NULL)
|
|
&& !nomap)
|
|
align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
|
|
|
|
prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
|
|
if (prop) {
|
|
|
|
if (len % t_len != 0) {
|
|
pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
|
|
uname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
base = 0;
|
|
|
|
while (len > 0) {
|
|
start = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
|
end = start + dt_mem_next_cell(dt_root_size_cells,
|
|
&prop);
|
|
|
|
ret = __reserved_mem_alloc_in_range(size, align,
|
|
start, end, nomap, &base);
|
|
if (ret == 0) {
|
|
pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
|
|
uname, &base,
|
|
(unsigned long)(size / SZ_1M));
|
|
break;
|
|
}
|
|
len -= t_len;
|
|
}
|
|
|
|
} else {
|
|
ret = early_init_dt_alloc_reserved_memory_arch(size, align,
|
|
0, 0, nomap, &base);
|
|
if (ret == 0)
|
|
pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
|
|
uname, &base, (unsigned long)(size / SZ_1M));
|
|
}
|
|
|
|
if (base == 0) {
|
|
pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
|
|
uname, (unsigned long)(size / SZ_1M));
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Save region in the reserved_mem array */
|
|
fdt_reserved_mem_save_node(node, uname, base, size);
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id __rmem_of_table_sentinel
|
|
__used __section("__reservedmem_of_table_end");
|
|
|
|
/*
|
|
* __reserved_mem_init_node() - call region specific reserved memory init code
|
|
*/
|
|
static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
|
|
{
|
|
extern const struct of_device_id __reservedmem_of_table[];
|
|
const struct of_device_id *i;
|
|
int ret = -ENOENT;
|
|
|
|
for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
|
|
reservedmem_of_init_fn initfn = i->data;
|
|
const char *compat = i->compatible;
|
|
|
|
if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
|
|
continue;
|
|
|
|
ret = initfn(rmem);
|
|
if (ret == 0) {
|
|
pr_info("initialized node %s, compatible id %s\n",
|
|
rmem->name, compat);
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int __init __rmem_cmp(const void *a, const void *b)
|
|
{
|
|
const struct reserved_mem *ra = a, *rb = b;
|
|
|
|
if (ra->base < rb->base)
|
|
return -1;
|
|
|
|
if (ra->base > rb->base)
|
|
return 1;
|
|
|
|
/*
|
|
* Put the dynamic allocations (address == 0, size == 0) before static
|
|
* allocations at address 0x0 so that overlap detection works
|
|
* correctly.
|
|
*/
|
|
if (ra->size < rb->size)
|
|
return -1;
|
|
if (ra->size > rb->size)
|
|
return 1;
|
|
|
|
if (ra->fdt_node < rb->fdt_node)
|
|
return -1;
|
|
if (ra->fdt_node > rb->fdt_node)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __init __rmem_check_for_overlap(void)
|
|
{
|
|
int i;
|
|
|
|
if (reserved_mem_count < 2)
|
|
return;
|
|
|
|
sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
|
|
__rmem_cmp, NULL);
|
|
for (i = 0; i < reserved_mem_count - 1; i++) {
|
|
struct reserved_mem *this, *next;
|
|
|
|
this = &reserved_mem[i];
|
|
next = &reserved_mem[i + 1];
|
|
|
|
if (this->base + this->size > next->base) {
|
|
phys_addr_t this_end, next_end;
|
|
|
|
this_end = this->base + this->size;
|
|
next_end = next->base + next->size;
|
|
pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
|
|
this->name, &this->base, &this_end,
|
|
next->name, &next->base, &next_end);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fdt_init_reserved_mem_node() - Initialize a reserved memory region
|
|
* @rmem: reserved_mem struct of the memory region to be initialized.
|
|
*
|
|
* This function is used to call the region specific initialization
|
|
* function for a reserved memory region.
|
|
*/
|
|
static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
|
|
{
|
|
unsigned long node = rmem->fdt_node;
|
|
int err = 0;
|
|
bool nomap;
|
|
|
|
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
|
|
|
|
err = __reserved_mem_init_node(rmem);
|
|
if (err != 0 && err != -ENOENT) {
|
|
pr_info("node %s compatible matching fail\n", rmem->name);
|
|
if (nomap)
|
|
memblock_clear_nomap(rmem->base, rmem->size);
|
|
else
|
|
memblock_phys_free(rmem->base, rmem->size);
|
|
} else {
|
|
phys_addr_t end = rmem->base + rmem->size - 1;
|
|
bool reusable =
|
|
(of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
|
|
|
|
pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
|
|
&rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
|
|
nomap ? "nomap" : "map",
|
|
reusable ? "reusable" : "non-reusable",
|
|
rmem->name ? rmem->name : "unknown");
|
|
}
|
|
}
|
|
|
|
struct rmem_assigned_device {
|
|
struct device *dev;
|
|
struct reserved_mem *rmem;
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(of_rmem_assigned_device_list);
|
|
static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
|
|
|
|
/**
|
|
* of_reserved_mem_device_init_by_idx() - assign reserved memory region to
|
|
* given device
|
|
* @dev: Pointer to the device to configure
|
|
* @np: Pointer to the device_node with 'reserved-memory' property
|
|
* @idx: Index of selected region
|
|
*
|
|
* This function assigns respective DMA-mapping operations based on reserved
|
|
* memory region specified by 'memory-region' property in @np node to the @dev
|
|
* device. When driver needs to use more than one reserved memory region, it
|
|
* should allocate child devices and initialize regions by name for each of
|
|
* child device.
|
|
*
|
|
* Returns error code or zero on success.
|
|
*/
|
|
int of_reserved_mem_device_init_by_idx(struct device *dev,
|
|
struct device_node *np, int idx)
|
|
{
|
|
struct rmem_assigned_device *rd;
|
|
struct device_node *target;
|
|
struct reserved_mem *rmem;
|
|
int ret;
|
|
|
|
if (!np || !dev)
|
|
return -EINVAL;
|
|
|
|
target = of_parse_phandle(np, "memory-region", idx);
|
|
if (!target)
|
|
return -ENODEV;
|
|
|
|
if (!of_device_is_available(target)) {
|
|
of_node_put(target);
|
|
return 0;
|
|
}
|
|
|
|
rmem = of_reserved_mem_lookup(target);
|
|
of_node_put(target);
|
|
|
|
if (!rmem || !rmem->ops || !rmem->ops->device_init)
|
|
return -EINVAL;
|
|
|
|
rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
|
|
if (!rd)
|
|
return -ENOMEM;
|
|
|
|
ret = rmem->ops->device_init(rmem, dev);
|
|
if (ret == 0) {
|
|
rd->dev = dev;
|
|
rd->rmem = rmem;
|
|
|
|
mutex_lock(&of_rmem_assigned_device_mutex);
|
|
list_add(&rd->list, &of_rmem_assigned_device_list);
|
|
mutex_unlock(&of_rmem_assigned_device_mutex);
|
|
|
|
dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
|
|
} else {
|
|
kfree(rd);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
|
|
|
|
/**
|
|
* of_reserved_mem_device_init_by_name() - assign named reserved memory region
|
|
* to given device
|
|
* @dev: pointer to the device to configure
|
|
* @np: pointer to the device node with 'memory-region' property
|
|
* @name: name of the selected memory region
|
|
*
|
|
* Returns: 0 on success or a negative error-code on failure.
|
|
*/
|
|
int of_reserved_mem_device_init_by_name(struct device *dev,
|
|
struct device_node *np,
|
|
const char *name)
|
|
{
|
|
int idx = of_property_match_string(np, "memory-region-names", name);
|
|
|
|
return of_reserved_mem_device_init_by_idx(dev, np, idx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
|
|
|
|
/**
|
|
* of_reserved_mem_device_release() - release reserved memory device structures
|
|
* @dev: Pointer to the device to deconfigure
|
|
*
|
|
* This function releases structures allocated for memory region handling for
|
|
* the given device.
|
|
*/
|
|
void of_reserved_mem_device_release(struct device *dev)
|
|
{
|
|
struct rmem_assigned_device *rd, *tmp;
|
|
LIST_HEAD(release_list);
|
|
|
|
mutex_lock(&of_rmem_assigned_device_mutex);
|
|
list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
|
|
if (rd->dev == dev)
|
|
list_move_tail(&rd->list, &release_list);
|
|
}
|
|
mutex_unlock(&of_rmem_assigned_device_mutex);
|
|
|
|
list_for_each_entry_safe(rd, tmp, &release_list, list) {
|
|
if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
|
|
rd->rmem->ops->device_release(rd->rmem, dev);
|
|
|
|
kfree(rd);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
|
|
|
|
/**
|
|
* of_reserved_mem_lookup() - acquire reserved_mem from a device node
|
|
* @np: node pointer of the desired reserved-memory region
|
|
*
|
|
* This function allows drivers to acquire a reference to the reserved_mem
|
|
* struct based on a device node handle.
|
|
*
|
|
* Returns a reserved_mem reference, or NULL on error.
|
|
*/
|
|
struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
|
|
{
|
|
const char *name;
|
|
int i;
|
|
|
|
if (!np->full_name)
|
|
return NULL;
|
|
|
|
name = kbasename(np->full_name);
|
|
for (i = 0; i < reserved_mem_count; i++)
|
|
if (!strcmp(reserved_mem[i].name, name))
|
|
return &reserved_mem[i];
|
|
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
|