1439 lines
39 KiB
C
1439 lines
39 KiB
C
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
|
/*
|
|
* Copyright (C) 2017 Intel Deutschland GmbH
|
|
* Copyright (C) 2018-2020, 2023-2024 Intel Corporation
|
|
*/
|
|
#include <net/tso.h>
|
|
#include <linux/tcp.h>
|
|
|
|
#include "iwl-debug.h"
|
|
#include "iwl-csr.h"
|
|
#include "iwl-io.h"
|
|
#include "internal.h"
|
|
#include "fw/api/tx.h"
|
|
#include "fw/api/commands.h"
|
|
#include "fw/api/datapath.h"
|
|
#include "iwl-scd.h"
|
|
|
|
static struct page *get_workaround_page(struct iwl_trans *trans,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_tso_page_info *info;
|
|
struct page **page_ptr;
|
|
struct page *ret;
|
|
dma_addr_t phys;
|
|
|
|
page_ptr = (void *)((u8 *)skb->cb + trans_pcie->txqs.page_offs);
|
|
|
|
ret = alloc_page(GFP_ATOMIC);
|
|
if (!ret)
|
|
return NULL;
|
|
|
|
info = IWL_TSO_PAGE_INFO(page_address(ret));
|
|
|
|
/* Create a DMA mapping for the page */
|
|
phys = dma_map_page_attrs(trans->dev, ret, 0, PAGE_SIZE,
|
|
DMA_TO_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
|
|
if (unlikely(dma_mapping_error(trans->dev, phys))) {
|
|
__free_page(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* Store physical address and set use count */
|
|
info->dma_addr = phys;
|
|
refcount_set(&info->use_count, 1);
|
|
|
|
/* set the chaining pointer to the previous page if there */
|
|
info->next = *page_ptr;
|
|
*page_ptr = ret;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Add a TB and if needed apply the FH HW bug workaround;
|
|
* meta != NULL indicates that it's a page mapping and we
|
|
* need to dma_unmap_page() and set the meta->tbs bit in
|
|
* this case.
|
|
*/
|
|
static int iwl_txq_gen2_set_tb_with_wa(struct iwl_trans *trans,
|
|
struct sk_buff *skb,
|
|
struct iwl_tfh_tfd *tfd,
|
|
dma_addr_t phys, void *virt,
|
|
u16 len, struct iwl_cmd_meta *meta,
|
|
bool unmap)
|
|
{
|
|
dma_addr_t oldphys = phys;
|
|
struct page *page;
|
|
int ret;
|
|
|
|
if (unlikely(dma_mapping_error(trans->dev, phys)))
|
|
return -ENOMEM;
|
|
|
|
if (likely(!iwl_txq_crosses_4g_boundary(phys, len))) {
|
|
ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len);
|
|
|
|
if (ret < 0)
|
|
goto unmap;
|
|
|
|
if (meta)
|
|
meta->tbs |= BIT(ret);
|
|
|
|
ret = 0;
|
|
goto trace;
|
|
}
|
|
|
|
/*
|
|
* Work around a hardware bug. If (as expressed in the
|
|
* condition above) the TB ends on a 32-bit boundary,
|
|
* then the next TB may be accessed with the wrong
|
|
* address.
|
|
* To work around it, copy the data elsewhere and make
|
|
* a new mapping for it so the device will not fail.
|
|
*/
|
|
|
|
if (WARN_ON(len > IWL_TSO_PAGE_DATA_SIZE)) {
|
|
ret = -ENOBUFS;
|
|
goto unmap;
|
|
}
|
|
|
|
page = get_workaround_page(trans, skb);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto unmap;
|
|
}
|
|
|
|
memcpy(page_address(page), virt, len);
|
|
|
|
/*
|
|
* This is a bit odd, but performance does not matter here, what
|
|
* matters are the expectations of the calling code and TB cleanup
|
|
* function.
|
|
*
|
|
* As such, if unmap is set, then create another mapping for the TB
|
|
* entry as it will be unmapped later. On the other hand, if it is not
|
|
* set, then the TB entry will not be unmapped and instead we simply
|
|
* reference and sync the mapping that get_workaround_page() created.
|
|
*/
|
|
if (unmap) {
|
|
phys = dma_map_single(trans->dev, page_address(page), len,
|
|
DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(trans->dev, phys)))
|
|
return -ENOMEM;
|
|
} else {
|
|
phys = iwl_pcie_get_tso_page_phys(page_address(page));
|
|
dma_sync_single_for_device(trans->dev, phys, len,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len);
|
|
if (ret < 0) {
|
|
/* unmap the new allocation as single */
|
|
oldphys = phys;
|
|
meta = NULL;
|
|
goto unmap;
|
|
}
|
|
|
|
IWL_DEBUG_TX(trans,
|
|
"TB bug workaround: copied %d bytes from 0x%llx to 0x%llx\n",
|
|
len, (unsigned long long)oldphys,
|
|
(unsigned long long)phys);
|
|
|
|
ret = 0;
|
|
unmap:
|
|
if (!unmap)
|
|
goto trace;
|
|
|
|
if (meta)
|
|
dma_unmap_page(trans->dev, oldphys, len, DMA_TO_DEVICE);
|
|
else
|
|
dma_unmap_single(trans->dev, oldphys, len, DMA_TO_DEVICE);
|
|
trace:
|
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb, virt, phys, len);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int iwl_txq_gen2_build_amsdu(struct iwl_trans *trans,
|
|
struct sk_buff *skb,
|
|
struct iwl_tfh_tfd *tfd,
|
|
struct iwl_cmd_meta *out_meta,
|
|
int start_len,
|
|
u8 hdr_len,
|
|
struct iwl_device_tx_cmd *dev_cmd)
|
|
{
|
|
#ifdef CONFIG_INET
|
|
struct iwl_tx_cmd_gen2 *tx_cmd = (void *)dev_cmd->payload;
|
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
|
unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room;
|
|
unsigned int mss = skb_shinfo(skb)->gso_size;
|
|
unsigned int data_offset = 0;
|
|
dma_addr_t start_hdr_phys;
|
|
u16 length, amsdu_pad;
|
|
u8 *start_hdr;
|
|
struct sg_table *sgt;
|
|
struct tso_t tso;
|
|
|
|
trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd),
|
|
&dev_cmd->hdr, start_len, 0);
|
|
|
|
ip_hdrlen = skb_network_header_len(skb);
|
|
snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb);
|
|
total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len;
|
|
amsdu_pad = 0;
|
|
|
|
/* total amount of header we may need for this A-MSDU */
|
|
hdr_room = DIV_ROUND_UP(total_len, mss) *
|
|
(3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr));
|
|
|
|
/* Our device supports 9 segments at most, it will fit in 1 page */
|
|
sgt = iwl_pcie_prep_tso(trans, skb, out_meta, &start_hdr, hdr_room);
|
|
if (!sgt)
|
|
return -ENOMEM;
|
|
|
|
start_hdr_phys = iwl_pcie_get_tso_page_phys(start_hdr);
|
|
|
|
/*
|
|
* Pull the ieee80211 header to be able to use TSO core,
|
|
* we will restore it for the tx_status flow.
|
|
*/
|
|
skb_pull(skb, hdr_len);
|
|
|
|
/*
|
|
* Remove the length of all the headers that we don't actually
|
|
* have in the MPDU by themselves, but that we duplicate into
|
|
* all the different MSDUs inside the A-MSDU.
|
|
*/
|
|
le16_add_cpu(&tx_cmd->len, -snap_ip_tcp_hdrlen);
|
|
|
|
tso_start(skb, &tso);
|
|
|
|
while (total_len) {
|
|
/* this is the data left for this subframe */
|
|
unsigned int data_left = min_t(unsigned int, mss, total_len);
|
|
unsigned int tb_len;
|
|
dma_addr_t tb_phys;
|
|
u8 *pos_hdr = start_hdr;
|
|
|
|
total_len -= data_left;
|
|
|
|
memset(pos_hdr, 0, amsdu_pad);
|
|
pos_hdr += amsdu_pad;
|
|
amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen +
|
|
data_left)) & 0x3;
|
|
ether_addr_copy(pos_hdr, ieee80211_get_DA(hdr));
|
|
pos_hdr += ETH_ALEN;
|
|
ether_addr_copy(pos_hdr, ieee80211_get_SA(hdr));
|
|
pos_hdr += ETH_ALEN;
|
|
|
|
length = snap_ip_tcp_hdrlen + data_left;
|
|
*((__be16 *)pos_hdr) = cpu_to_be16(length);
|
|
pos_hdr += sizeof(length);
|
|
|
|
/*
|
|
* This will copy the SNAP as well which will be considered
|
|
* as MAC header.
|
|
*/
|
|
tso_build_hdr(skb, pos_hdr, &tso, data_left, !total_len);
|
|
|
|
pos_hdr += snap_ip_tcp_hdrlen;
|
|
|
|
tb_len = pos_hdr - start_hdr;
|
|
tb_phys = iwl_pcie_get_tso_page_phys(start_hdr);
|
|
|
|
/*
|
|
* No need for _with_wa, this is from the TSO page and
|
|
* we leave some space at the end of it so can't hit
|
|
* the buggy scenario.
|
|
*/
|
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb_len);
|
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb, start_hdr,
|
|
tb_phys, tb_len);
|
|
/* add this subframe's headers' length to the tx_cmd */
|
|
le16_add_cpu(&tx_cmd->len, tb_len);
|
|
|
|
/* prepare the start_hdr for the next subframe */
|
|
start_hdr = pos_hdr;
|
|
|
|
/* put the payload */
|
|
while (data_left) {
|
|
int ret;
|
|
|
|
tb_len = min_t(unsigned int, tso.size, data_left);
|
|
tb_phys = iwl_pcie_get_sgt_tb_phys(sgt, data_offset,
|
|
tb_len);
|
|
/* Not a real mapping error, use direct comparison */
|
|
if (unlikely(tb_phys == DMA_MAPPING_ERROR))
|
|
goto out_err;
|
|
|
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd,
|
|
tb_phys, tso.data,
|
|
tb_len, NULL, false);
|
|
if (ret)
|
|
goto out_err;
|
|
|
|
data_left -= tb_len;
|
|
data_offset += tb_len;
|
|
tso_build_data(skb, &tso, tb_len);
|
|
}
|
|
}
|
|
|
|
dma_sync_single_for_device(trans->dev, start_hdr_phys, hdr_room,
|
|
DMA_TO_DEVICE);
|
|
|
|
/* re -add the WiFi header */
|
|
skb_push(skb, hdr_len);
|
|
|
|
return 0;
|
|
|
|
out_err:
|
|
#endif
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct
|
|
iwl_tfh_tfd *iwl_txq_gen2_build_tx_amsdu(struct iwl_trans *trans,
|
|
struct iwl_txq *txq,
|
|
struct iwl_device_tx_cmd *dev_cmd,
|
|
struct sk_buff *skb,
|
|
struct iwl_cmd_meta *out_meta,
|
|
int hdr_len,
|
|
int tx_cmd_len)
|
|
{
|
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
|
struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx);
|
|
dma_addr_t tb_phys;
|
|
int len;
|
|
void *tb1_addr;
|
|
|
|
tb_phys = iwl_txq_get_first_tb_dma(txq, idx);
|
|
|
|
/*
|
|
* No need for _with_wa, the first TB allocation is aligned up
|
|
* to a 64-byte boundary and thus can't be at the end or cross
|
|
* a page boundary (much less a 2^32 boundary).
|
|
*/
|
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE);
|
|
|
|
/*
|
|
* The second TB (tb1) points to the remainder of the TX command
|
|
* and the 802.11 header - dword aligned size
|
|
* (This calculation modifies the TX command, so do it before the
|
|
* setup of the first TB)
|
|
*/
|
|
len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len -
|
|
IWL_FIRST_TB_SIZE;
|
|
|
|
/* do not align A-MSDU to dword as the subframe header aligns it */
|
|
|
|
/* map the data for TB1 */
|
|
tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE;
|
|
tb_phys = dma_map_single(trans->dev, tb1_addr, len, DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
|
|
goto out_err;
|
|
/*
|
|
* No need for _with_wa(), we ensure (via alignment) that the data
|
|
* here can never cross or end at a page boundary.
|
|
*/
|
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, len);
|
|
|
|
if (iwl_txq_gen2_build_amsdu(trans, skb, tfd, out_meta,
|
|
len + IWL_FIRST_TB_SIZE, hdr_len, dev_cmd))
|
|
goto out_err;
|
|
|
|
/* building the A-MSDU might have changed this data, memcpy it now */
|
|
memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE);
|
|
return tfd;
|
|
|
|
out_err:
|
|
iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd);
|
|
return NULL;
|
|
}
|
|
|
|
static int iwl_txq_gen2_tx_add_frags(struct iwl_trans *trans,
|
|
struct sk_buff *skb,
|
|
struct iwl_tfh_tfd *tfd,
|
|
struct iwl_cmd_meta *out_meta)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
dma_addr_t tb_phys;
|
|
unsigned int fragsz = skb_frag_size(frag);
|
|
int ret;
|
|
|
|
if (!fragsz)
|
|
continue;
|
|
|
|
tb_phys = skb_frag_dma_map(trans->dev, frag, 0,
|
|
fragsz, DMA_TO_DEVICE);
|
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys,
|
|
skb_frag_address(frag),
|
|
fragsz, out_meta, true);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct
|
|
iwl_tfh_tfd *iwl_txq_gen2_build_tx(struct iwl_trans *trans,
|
|
struct iwl_txq *txq,
|
|
struct iwl_device_tx_cmd *dev_cmd,
|
|
struct sk_buff *skb,
|
|
struct iwl_cmd_meta *out_meta,
|
|
int hdr_len,
|
|
int tx_cmd_len,
|
|
bool pad)
|
|
{
|
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
|
struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx);
|
|
dma_addr_t tb_phys;
|
|
int len, tb1_len, tb2_len;
|
|
void *tb1_addr;
|
|
struct sk_buff *frag;
|
|
|
|
tb_phys = iwl_txq_get_first_tb_dma(txq, idx);
|
|
|
|
/* The first TB points to bi-directional DMA data */
|
|
memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE);
|
|
|
|
/*
|
|
* No need for _with_wa, the first TB allocation is aligned up
|
|
* to a 64-byte boundary and thus can't be at the end or cross
|
|
* a page boundary (much less a 2^32 boundary).
|
|
*/
|
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE);
|
|
|
|
/*
|
|
* The second TB (tb1) points to the remainder of the TX command
|
|
* and the 802.11 header - dword aligned size
|
|
* (This calculation modifies the TX command, so do it before the
|
|
* setup of the first TB)
|
|
*/
|
|
len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len -
|
|
IWL_FIRST_TB_SIZE;
|
|
|
|
if (pad)
|
|
tb1_len = ALIGN(len, 4);
|
|
else
|
|
tb1_len = len;
|
|
|
|
/* map the data for TB1 */
|
|
tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE;
|
|
tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
|
|
goto out_err;
|
|
/*
|
|
* No need for _with_wa(), we ensure (via alignment) that the data
|
|
* here can never cross or end at a page boundary.
|
|
*/
|
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb1_len);
|
|
trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr,
|
|
IWL_FIRST_TB_SIZE + tb1_len, hdr_len);
|
|
|
|
/* set up TFD's third entry to point to remainder of skb's head */
|
|
tb2_len = skb_headlen(skb) - hdr_len;
|
|
|
|
if (tb2_len > 0) {
|
|
int ret;
|
|
|
|
tb_phys = dma_map_single(trans->dev, skb->data + hdr_len,
|
|
tb2_len, DMA_TO_DEVICE);
|
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys,
|
|
skb->data + hdr_len, tb2_len,
|
|
NULL, true);
|
|
if (ret)
|
|
goto out_err;
|
|
}
|
|
|
|
if (iwl_txq_gen2_tx_add_frags(trans, skb, tfd, out_meta))
|
|
goto out_err;
|
|
|
|
skb_walk_frags(skb, frag) {
|
|
int ret;
|
|
|
|
tb_phys = dma_map_single(trans->dev, frag->data,
|
|
skb_headlen(frag), DMA_TO_DEVICE);
|
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys,
|
|
frag->data,
|
|
skb_headlen(frag), NULL,
|
|
true);
|
|
if (ret)
|
|
goto out_err;
|
|
if (iwl_txq_gen2_tx_add_frags(trans, frag, tfd, out_meta))
|
|
goto out_err;
|
|
}
|
|
|
|
return tfd;
|
|
|
|
out_err:
|
|
iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd);
|
|
return NULL;
|
|
}
|
|
|
|
static
|
|
struct iwl_tfh_tfd *iwl_txq_gen2_build_tfd(struct iwl_trans *trans,
|
|
struct iwl_txq *txq,
|
|
struct iwl_device_tx_cmd *dev_cmd,
|
|
struct sk_buff *skb,
|
|
struct iwl_cmd_meta *out_meta)
|
|
{
|
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
|
struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx);
|
|
int len, hdr_len;
|
|
bool amsdu;
|
|
|
|
/* There must be data left over for TB1 or this code must be changed */
|
|
BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen2) < IWL_FIRST_TB_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct iwl_cmd_header) +
|
|
offsetofend(struct iwl_tx_cmd_gen2, dram_info) >
|
|
IWL_FIRST_TB_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen3) < IWL_FIRST_TB_SIZE);
|
|
BUILD_BUG_ON(sizeof(struct iwl_cmd_header) +
|
|
offsetofend(struct iwl_tx_cmd_gen3, dram_info) >
|
|
IWL_FIRST_TB_SIZE);
|
|
|
|
memset(tfd, 0, sizeof(*tfd));
|
|
|
|
if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
|
|
len = sizeof(struct iwl_tx_cmd_gen2);
|
|
else
|
|
len = sizeof(struct iwl_tx_cmd_gen3);
|
|
|
|
amsdu = ieee80211_is_data_qos(hdr->frame_control) &&
|
|
(*ieee80211_get_qos_ctl(hdr) &
|
|
IEEE80211_QOS_CTL_A_MSDU_PRESENT);
|
|
|
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
|
|
|
/*
|
|
* Only build A-MSDUs here if doing so by GSO, otherwise it may be
|
|
* an A-MSDU for other reasons, e.g. NAN or an A-MSDU having been
|
|
* built in the higher layers already.
|
|
*/
|
|
if (amsdu && skb_shinfo(skb)->gso_size)
|
|
return iwl_txq_gen2_build_tx_amsdu(trans, txq, dev_cmd, skb,
|
|
out_meta, hdr_len, len);
|
|
return iwl_txq_gen2_build_tx(trans, txq, dev_cmd, skb, out_meta,
|
|
hdr_len, len, !amsdu);
|
|
}
|
|
|
|
int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q)
|
|
{
|
|
unsigned int max;
|
|
unsigned int used;
|
|
|
|
/*
|
|
* To avoid ambiguity between empty and completely full queues, there
|
|
* should always be less than max_tfd_queue_size elements in the queue.
|
|
* If q->n_window is smaller than max_tfd_queue_size, there is no need
|
|
* to reserve any queue entries for this purpose.
|
|
*/
|
|
if (q->n_window < trans->trans_cfg->base_params->max_tfd_queue_size)
|
|
max = q->n_window;
|
|
else
|
|
max = trans->trans_cfg->base_params->max_tfd_queue_size - 1;
|
|
|
|
/*
|
|
* max_tfd_queue_size is a power of 2, so the following is equivalent to
|
|
* modulo by max_tfd_queue_size and is well defined.
|
|
*/
|
|
used = (q->write_ptr - q->read_ptr) &
|
|
(trans->trans_cfg->base_params->max_tfd_queue_size - 1);
|
|
|
|
if (WARN_ON(used > max))
|
|
return 0;
|
|
|
|
return max - used;
|
|
}
|
|
|
|
/*
|
|
* iwl_pcie_gen2_update_byte_tbl - Set up entry in Tx byte-count array
|
|
*/
|
|
static void iwl_pcie_gen2_update_byte_tbl(struct iwl_trans *trans,
|
|
struct iwl_txq *txq, u16 byte_cnt,
|
|
int num_tbs)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
|
u8 filled_tfd_size, num_fetch_chunks;
|
|
u16 len = byte_cnt;
|
|
__le16 bc_ent;
|
|
|
|
if (WARN(idx >= txq->n_window, "%d >= %d\n", idx, txq->n_window))
|
|
return;
|
|
|
|
filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) +
|
|
num_tbs * sizeof(struct iwl_tfh_tb);
|
|
/*
|
|
* filled_tfd_size contains the number of filled bytes in the TFD.
|
|
* Dividing it by 64 will give the number of chunks to fetch
|
|
* to SRAM- 0 for one chunk, 1 for 2 and so on.
|
|
* If, for example, TFD contains only 3 TBs then 32 bytes
|
|
* of the TFD are used, and only one chunk of 64 bytes should
|
|
* be fetched
|
|
*/
|
|
num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1;
|
|
|
|
if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
struct iwl_gen3_bc_tbl_entry *scd_bc_tbl_gen3 = txq->bc_tbl.addr;
|
|
|
|
/* Starting from AX210, the HW expects bytes */
|
|
WARN_ON(trans_pcie->txqs.bc_table_dword);
|
|
WARN_ON(len > 0x3FFF);
|
|
bc_ent = cpu_to_le16(len | (num_fetch_chunks << 14));
|
|
scd_bc_tbl_gen3[idx].tfd_offset = bc_ent;
|
|
} else {
|
|
struct iwlagn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.addr;
|
|
|
|
/* Before AX210, the HW expects DW */
|
|
WARN_ON(!trans_pcie->txqs.bc_table_dword);
|
|
len = DIV_ROUND_UP(len, 4);
|
|
WARN_ON(len > 0xFFF);
|
|
bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12));
|
|
scd_bc_tbl->tfd_offset[idx] = bc_ent;
|
|
}
|
|
}
|
|
|
|
static u8 iwl_txq_gen2_get_num_tbs(struct iwl_tfh_tfd *tfd)
|
|
{
|
|
return le16_to_cpu(tfd->num_tbs) & 0x1f;
|
|
}
|
|
|
|
int iwl_txq_gen2_set_tb(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd,
|
|
dma_addr_t addr, u16 len)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int idx = iwl_txq_gen2_get_num_tbs(tfd);
|
|
struct iwl_tfh_tb *tb;
|
|
|
|
/* Only WARN here so we know about the issue, but we mess up our
|
|
* unmap path because not every place currently checks for errors
|
|
* returned from this function - it can only return an error if
|
|
* there's no more space, and so when we know there is enough we
|
|
* don't always check ...
|
|
*/
|
|
WARN(iwl_txq_crosses_4g_boundary(addr, len),
|
|
"possible DMA problem with iova:0x%llx, len:%d\n",
|
|
(unsigned long long)addr, len);
|
|
|
|
if (WARN_ON(idx >= IWL_TFH_NUM_TBS))
|
|
return -EINVAL;
|
|
tb = &tfd->tbs[idx];
|
|
|
|
/* Each TFD can point to a maximum max_tbs Tx buffers */
|
|
if (le16_to_cpu(tfd->num_tbs) >= trans_pcie->txqs.tfd.max_tbs) {
|
|
IWL_ERR(trans, "Error can not send more than %d chunks\n",
|
|
trans_pcie->txqs.tfd.max_tbs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
put_unaligned_le64(addr, &tb->addr);
|
|
tb->tb_len = cpu_to_le16(len);
|
|
|
|
tfd->num_tbs = cpu_to_le16(idx + 1);
|
|
|
|
return idx;
|
|
}
|
|
|
|
void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans,
|
|
struct iwl_cmd_meta *meta,
|
|
struct iwl_tfh_tfd *tfd)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int i, num_tbs;
|
|
|
|
/* Sanity check on number of chunks */
|
|
num_tbs = iwl_txq_gen2_get_num_tbs(tfd);
|
|
|
|
if (num_tbs > trans_pcie->txqs.tfd.max_tbs) {
|
|
IWL_ERR(trans, "Too many chunks: %i\n", num_tbs);
|
|
return;
|
|
}
|
|
|
|
/* TB1 is mapped directly, the rest is the TSO page and SG list. */
|
|
if (meta->sg_offset)
|
|
num_tbs = 2;
|
|
|
|
/* first TB is never freed - it's the bidirectional DMA data */
|
|
for (i = 1; i < num_tbs; i++) {
|
|
if (meta->tbs & BIT(i))
|
|
dma_unmap_page(trans->dev,
|
|
le64_to_cpu(tfd->tbs[i].addr),
|
|
le16_to_cpu(tfd->tbs[i].tb_len),
|
|
DMA_TO_DEVICE);
|
|
else
|
|
dma_unmap_single(trans->dev,
|
|
le64_to_cpu(tfd->tbs[i].addr),
|
|
le16_to_cpu(tfd->tbs[i].tb_len),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
iwl_txq_set_tfd_invalid_gen2(trans, tfd);
|
|
}
|
|
|
|
static void iwl_txq_gen2_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq)
|
|
{
|
|
/* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and
|
|
* idx is bounded by n_window
|
|
*/
|
|
int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr);
|
|
struct sk_buff *skb;
|
|
|
|
lockdep_assert_held(&txq->lock);
|
|
|
|
if (!txq->entries)
|
|
return;
|
|
|
|
iwl_txq_gen2_tfd_unmap(trans, &txq->entries[idx].meta,
|
|
iwl_txq_get_tfd(trans, txq, idx));
|
|
|
|
skb = txq->entries[idx].skb;
|
|
|
|
/* Can be called from irqs-disabled context
|
|
* If skb is not NULL, it means that the whole queue is being
|
|
* freed and that the queue is not empty - free the skb
|
|
*/
|
|
if (skb) {
|
|
iwl_op_mode_free_skb(trans->op_mode, skb);
|
|
txq->entries[idx].skb = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* iwl_txq_inc_wr_ptr - Send new write index to hardware
|
|
*/
|
|
static void iwl_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq)
|
|
{
|
|
lockdep_assert_held(&txq->lock);
|
|
|
|
IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq->id, txq->write_ptr);
|
|
|
|
/*
|
|
* if not in power-save mode, uCode will never sleep when we're
|
|
* trying to tx (during RFKILL, we're not trying to tx).
|
|
*/
|
|
iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (txq->id << 16));
|
|
}
|
|
|
|
int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb,
|
|
struct iwl_device_tx_cmd *dev_cmd, int txq_id)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_cmd_meta *out_meta;
|
|
struct iwl_txq *txq = trans_pcie->txqs.txq[txq_id];
|
|
u16 cmd_len;
|
|
int idx;
|
|
void *tfd;
|
|
|
|
if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES,
|
|
"queue %d out of range", txq_id))
|
|
return -EINVAL;
|
|
|
|
if (WARN_ONCE(!test_bit(txq_id, trans_pcie->txqs.queue_used),
|
|
"TX on unused queue %d\n", txq_id))
|
|
return -EINVAL;
|
|
|
|
if (skb_is_nonlinear(skb) &&
|
|
skb_shinfo(skb)->nr_frags > IWL_TRANS_PCIE_MAX_FRAGS(trans_pcie) &&
|
|
__skb_linearize(skb))
|
|
return -ENOMEM;
|
|
|
|
spin_lock(&txq->lock);
|
|
|
|
if (iwl_txq_space(trans, txq) < txq->high_mark) {
|
|
iwl_txq_stop(trans, txq);
|
|
|
|
/* don't put the packet on the ring, if there is no room */
|
|
if (unlikely(iwl_txq_space(trans, txq) < 3)) {
|
|
struct iwl_device_tx_cmd **dev_cmd_ptr;
|
|
|
|
dev_cmd_ptr = (void *)((u8 *)skb->cb +
|
|
trans_pcie->txqs.dev_cmd_offs);
|
|
|
|
*dev_cmd_ptr = dev_cmd;
|
|
__skb_queue_tail(&txq->overflow_q, skb);
|
|
spin_unlock(&txq->lock);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
|
|
|
/* Set up driver data for this TFD */
|
|
txq->entries[idx].skb = skb;
|
|
txq->entries[idx].cmd = dev_cmd;
|
|
|
|
dev_cmd->hdr.sequence =
|
|
cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) |
|
|
INDEX_TO_SEQ(idx)));
|
|
|
|
/* Set up first empty entry in queue's array of Tx/cmd buffers */
|
|
out_meta = &txq->entries[idx].meta;
|
|
memset(out_meta, 0, sizeof(*out_meta));
|
|
|
|
tfd = iwl_txq_gen2_build_tfd(trans, txq, dev_cmd, skb, out_meta);
|
|
if (!tfd) {
|
|
spin_unlock(&txq->lock);
|
|
return -1;
|
|
}
|
|
|
|
if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
|
struct iwl_tx_cmd_gen3 *tx_cmd_gen3 =
|
|
(void *)dev_cmd->payload;
|
|
|
|
cmd_len = le16_to_cpu(tx_cmd_gen3->len);
|
|
} else {
|
|
struct iwl_tx_cmd_gen2 *tx_cmd_gen2 =
|
|
(void *)dev_cmd->payload;
|
|
|
|
cmd_len = le16_to_cpu(tx_cmd_gen2->len);
|
|
}
|
|
|
|
/* Set up entry for this TFD in Tx byte-count array */
|
|
iwl_pcie_gen2_update_byte_tbl(trans, txq, cmd_len,
|
|
iwl_txq_gen2_get_num_tbs(tfd));
|
|
|
|
/* start timer if queue currently empty */
|
|
if (txq->read_ptr == txq->write_ptr && txq->wd_timeout)
|
|
mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout);
|
|
|
|
/* Tell device the write index *just past* this latest filled TFD */
|
|
txq->write_ptr = iwl_txq_inc_wrap(trans, txq->write_ptr);
|
|
iwl_txq_inc_wr_ptr(trans, txq);
|
|
/*
|
|
* At this point the frame is "transmitted" successfully
|
|
* and we will get a TX status notification eventually.
|
|
*/
|
|
spin_unlock(&txq->lock);
|
|
return 0;
|
|
}
|
|
|
|
/*************** HOST COMMAND QUEUE FUNCTIONS *****/
|
|
|
|
/*
|
|
* iwl_txq_gen2_unmap - Unmap any remaining DMA mappings and free skb's
|
|
*/
|
|
static void iwl_txq_gen2_unmap(struct iwl_trans *trans, int txq_id)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq = trans_pcie->txqs.txq[txq_id];
|
|
|
|
spin_lock_bh(&txq->reclaim_lock);
|
|
spin_lock(&txq->lock);
|
|
while (txq->write_ptr != txq->read_ptr) {
|
|
IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n",
|
|
txq_id, txq->read_ptr);
|
|
|
|
if (txq_id != trans_pcie->txqs.cmd.q_id) {
|
|
int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr);
|
|
struct iwl_cmd_meta *cmd_meta = &txq->entries[idx].meta;
|
|
struct sk_buff *skb = txq->entries[idx].skb;
|
|
|
|
if (!WARN_ON_ONCE(!skb))
|
|
iwl_pcie_free_tso_pages(trans, skb, cmd_meta);
|
|
}
|
|
iwl_txq_gen2_free_tfd(trans, txq);
|
|
txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr);
|
|
}
|
|
|
|
while (!skb_queue_empty(&txq->overflow_q)) {
|
|
struct sk_buff *skb = __skb_dequeue(&txq->overflow_q);
|
|
|
|
iwl_op_mode_free_skb(trans->op_mode, skb);
|
|
}
|
|
|
|
spin_unlock(&txq->lock);
|
|
spin_unlock_bh(&txq->reclaim_lock);
|
|
|
|
/* just in case - this queue may have been stopped */
|
|
iwl_trans_pcie_wake_queue(trans, txq);
|
|
}
|
|
|
|
static void iwl_txq_gen2_free_memory(struct iwl_trans *trans,
|
|
struct iwl_txq *txq)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct device *dev = trans->dev;
|
|
|
|
/* De-alloc circular buffer of TFDs */
|
|
if (txq->tfds) {
|
|
dma_free_coherent(dev,
|
|
trans_pcie->txqs.tfd.size * txq->n_window,
|
|
txq->tfds, txq->dma_addr);
|
|
dma_free_coherent(dev,
|
|
sizeof(*txq->first_tb_bufs) * txq->n_window,
|
|
txq->first_tb_bufs, txq->first_tb_dma);
|
|
}
|
|
|
|
kfree(txq->entries);
|
|
if (txq->bc_tbl.addr)
|
|
dma_pool_free(trans_pcie->txqs.bc_pool,
|
|
txq->bc_tbl.addr, txq->bc_tbl.dma);
|
|
kfree(txq);
|
|
}
|
|
|
|
/*
|
|
* iwl_pcie_txq_free - Deallocate DMA queue.
|
|
* @txq: Transmit queue to deallocate.
|
|
*
|
|
* Empty queue by removing and destroying all BD's.
|
|
* Free all buffers.
|
|
* 0-fill, but do not free "txq" descriptor structure.
|
|
*/
|
|
static void iwl_txq_gen2_free(struct iwl_trans *trans, int txq_id)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
int i;
|
|
|
|
if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES,
|
|
"queue %d out of range", txq_id))
|
|
return;
|
|
|
|
txq = trans_pcie->txqs.txq[txq_id];
|
|
|
|
if (WARN_ON(!txq))
|
|
return;
|
|
|
|
iwl_txq_gen2_unmap(trans, txq_id);
|
|
|
|
/* De-alloc array of command/tx buffers */
|
|
if (txq_id == trans_pcie->txqs.cmd.q_id)
|
|
for (i = 0; i < txq->n_window; i++) {
|
|
kfree_sensitive(txq->entries[i].cmd);
|
|
kfree_sensitive(txq->entries[i].free_buf);
|
|
}
|
|
del_timer_sync(&txq->stuck_timer);
|
|
|
|
iwl_txq_gen2_free_memory(trans, txq);
|
|
|
|
trans_pcie->txqs.txq[txq_id] = NULL;
|
|
|
|
clear_bit(txq_id, trans_pcie->txqs.queue_used);
|
|
}
|
|
|
|
static struct iwl_txq *
|
|
iwl_txq_dyn_alloc_dma(struct iwl_trans *trans, int size, unsigned int timeout)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
size_t bc_tbl_size, bc_tbl_entries;
|
|
struct iwl_txq *txq;
|
|
int ret;
|
|
|
|
WARN_ON(!trans_pcie->txqs.bc_tbl_size);
|
|
|
|
bc_tbl_size = trans_pcie->txqs.bc_tbl_size;
|
|
bc_tbl_entries = bc_tbl_size / sizeof(u16);
|
|
|
|
if (WARN_ON(size > bc_tbl_entries))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
txq = kzalloc(sizeof(*txq), GFP_KERNEL);
|
|
if (!txq)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
txq->bc_tbl.addr = dma_pool_alloc(trans_pcie->txqs.bc_pool, GFP_KERNEL,
|
|
&txq->bc_tbl.dma);
|
|
if (!txq->bc_tbl.addr) {
|
|
IWL_ERR(trans, "Scheduler BC Table allocation failed\n");
|
|
kfree(txq);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
ret = iwl_pcie_txq_alloc(trans, txq, size, false);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Tx queue alloc failed\n");
|
|
goto error;
|
|
}
|
|
ret = iwl_txq_init(trans, txq, size, false);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Tx queue init failed\n");
|
|
goto error;
|
|
}
|
|
|
|
txq->wd_timeout = msecs_to_jiffies(timeout);
|
|
|
|
return txq;
|
|
|
|
error:
|
|
iwl_txq_gen2_free_memory(trans, txq);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int iwl_pcie_txq_alloc_response(struct iwl_trans *trans,
|
|
struct iwl_txq *txq,
|
|
struct iwl_host_cmd *hcmd)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_tx_queue_cfg_rsp *rsp;
|
|
int ret, qid;
|
|
u32 wr_ptr;
|
|
|
|
if (WARN_ON(iwl_rx_packet_payload_len(hcmd->resp_pkt) !=
|
|
sizeof(*rsp))) {
|
|
ret = -EINVAL;
|
|
goto error_free_resp;
|
|
}
|
|
|
|
rsp = (void *)hcmd->resp_pkt->data;
|
|
qid = le16_to_cpu(rsp->queue_number);
|
|
wr_ptr = le16_to_cpu(rsp->write_pointer);
|
|
|
|
if (qid >= ARRAY_SIZE(trans_pcie->txqs.txq)) {
|
|
WARN_ONCE(1, "queue index %d unsupported", qid);
|
|
ret = -EIO;
|
|
goto error_free_resp;
|
|
}
|
|
|
|
if (test_and_set_bit(qid, trans_pcie->txqs.queue_used)) {
|
|
WARN_ONCE(1, "queue %d already used", qid);
|
|
ret = -EIO;
|
|
goto error_free_resp;
|
|
}
|
|
|
|
if (WARN_ONCE(trans_pcie->txqs.txq[qid],
|
|
"queue %d already allocated\n", qid)) {
|
|
ret = -EIO;
|
|
goto error_free_resp;
|
|
}
|
|
|
|
txq->id = qid;
|
|
trans_pcie->txqs.txq[qid] = txq;
|
|
wr_ptr &= (trans->trans_cfg->base_params->max_tfd_queue_size - 1);
|
|
|
|
/* Place first TFD at index corresponding to start sequence number */
|
|
txq->read_ptr = wr_ptr;
|
|
txq->write_ptr = wr_ptr;
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d\n", qid);
|
|
|
|
iwl_free_resp(hcmd);
|
|
return qid;
|
|
|
|
error_free_resp:
|
|
iwl_free_resp(hcmd);
|
|
iwl_txq_gen2_free_memory(trans, txq);
|
|
return ret;
|
|
}
|
|
|
|
int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask,
|
|
u8 tid, int size, unsigned int timeout)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq;
|
|
union {
|
|
struct iwl_tx_queue_cfg_cmd old;
|
|
struct iwl_scd_queue_cfg_cmd new;
|
|
} cmd;
|
|
struct iwl_host_cmd hcmd = {
|
|
.flags = CMD_WANT_SKB,
|
|
};
|
|
int ret;
|
|
|
|
/* take the min with bytecount table entries allowed */
|
|
size = min_t(u32, size, trans_pcie->txqs.bc_tbl_size / sizeof(u16));
|
|
/* but must be power of 2 values for calculating read/write pointers */
|
|
size = rounddown_pow_of_two(size);
|
|
|
|
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_BZ &&
|
|
trans->hw_rev_step == SILICON_A_STEP) {
|
|
size = 4096;
|
|
txq = iwl_txq_dyn_alloc_dma(trans, size, timeout);
|
|
} else {
|
|
do {
|
|
txq = iwl_txq_dyn_alloc_dma(trans, size, timeout);
|
|
if (!IS_ERR(txq))
|
|
break;
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans,
|
|
"Failed allocating TXQ of size %d for sta mask %x tid %d, ret: %ld\n",
|
|
size, sta_mask, tid,
|
|
PTR_ERR(txq));
|
|
size /= 2;
|
|
} while (size >= 16);
|
|
}
|
|
|
|
if (IS_ERR(txq))
|
|
return PTR_ERR(txq);
|
|
|
|
if (trans_pcie->txqs.queue_alloc_cmd_ver == 0) {
|
|
memset(&cmd.old, 0, sizeof(cmd.old));
|
|
cmd.old.tfdq_addr = cpu_to_le64(txq->dma_addr);
|
|
cmd.old.byte_cnt_addr = cpu_to_le64(txq->bc_tbl.dma);
|
|
cmd.old.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size));
|
|
cmd.old.flags = cpu_to_le16(flags | TX_QUEUE_CFG_ENABLE_QUEUE);
|
|
cmd.old.tid = tid;
|
|
|
|
if (hweight32(sta_mask) != 1) {
|
|
ret = -EINVAL;
|
|
goto error;
|
|
}
|
|
cmd.old.sta_id = ffs(sta_mask) - 1;
|
|
|
|
hcmd.id = SCD_QUEUE_CFG;
|
|
hcmd.len[0] = sizeof(cmd.old);
|
|
hcmd.data[0] = &cmd.old;
|
|
} else if (trans_pcie->txqs.queue_alloc_cmd_ver == 3) {
|
|
memset(&cmd.new, 0, sizeof(cmd.new));
|
|
cmd.new.operation = cpu_to_le32(IWL_SCD_QUEUE_ADD);
|
|
cmd.new.u.add.tfdq_dram_addr = cpu_to_le64(txq->dma_addr);
|
|
cmd.new.u.add.bc_dram_addr = cpu_to_le64(txq->bc_tbl.dma);
|
|
cmd.new.u.add.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size));
|
|
cmd.new.u.add.flags = cpu_to_le32(flags);
|
|
cmd.new.u.add.sta_mask = cpu_to_le32(sta_mask);
|
|
cmd.new.u.add.tid = tid;
|
|
|
|
hcmd.id = WIDE_ID(DATA_PATH_GROUP, SCD_QUEUE_CONFIG_CMD);
|
|
hcmd.len[0] = sizeof(cmd.new);
|
|
hcmd.data[0] = &cmd.new;
|
|
} else {
|
|
ret = -EOPNOTSUPP;
|
|
goto error;
|
|
}
|
|
|
|
ret = iwl_trans_send_cmd(trans, &hcmd);
|
|
if (ret)
|
|
goto error;
|
|
|
|
return iwl_pcie_txq_alloc_response(trans, txq, &hcmd);
|
|
|
|
error:
|
|
iwl_txq_gen2_free_memory(trans, txq);
|
|
return ret;
|
|
}
|
|
|
|
void iwl_txq_dyn_free(struct iwl_trans *trans, int queue)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
|
|
if (WARN(queue >= IWL_MAX_TVQM_QUEUES,
|
|
"queue %d out of range", queue))
|
|
return;
|
|
|
|
/*
|
|
* Upon HW Rfkill - we stop the device, and then stop the queues
|
|
* in the op_mode. Just for the sake of the simplicity of the op_mode,
|
|
* allow the op_mode to call txq_disable after it already called
|
|
* stop_device.
|
|
*/
|
|
if (!test_and_clear_bit(queue, trans_pcie->txqs.queue_used)) {
|
|
WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status),
|
|
"queue %d not used", queue);
|
|
return;
|
|
}
|
|
|
|
iwl_txq_gen2_free(trans, queue);
|
|
|
|
IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", queue);
|
|
}
|
|
|
|
void iwl_txq_gen2_tx_free(struct iwl_trans *trans)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
int i;
|
|
|
|
memset(trans_pcie->txqs.queue_used, 0,
|
|
sizeof(trans_pcie->txqs.queue_used));
|
|
|
|
/* Free all TX queues */
|
|
for (i = 0; i < ARRAY_SIZE(trans_pcie->txqs.txq); i++) {
|
|
if (!trans_pcie->txqs.txq[i])
|
|
continue;
|
|
|
|
iwl_txq_gen2_free(trans, i);
|
|
}
|
|
}
|
|
|
|
int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id, int queue_size)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *queue;
|
|
int ret;
|
|
|
|
/* alloc and init the tx queue */
|
|
if (!trans_pcie->txqs.txq[txq_id]) {
|
|
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
|
|
if (!queue) {
|
|
IWL_ERR(trans, "Not enough memory for tx queue\n");
|
|
return -ENOMEM;
|
|
}
|
|
trans_pcie->txqs.txq[txq_id] = queue;
|
|
ret = iwl_pcie_txq_alloc(trans, queue, queue_size, true);
|
|
if (ret) {
|
|
IWL_ERR(trans, "Tx %d queue init failed\n", txq_id);
|
|
goto error;
|
|
}
|
|
} else {
|
|
queue = trans_pcie->txqs.txq[txq_id];
|
|
}
|
|
|
|
ret = iwl_txq_init(trans, queue, queue_size,
|
|
(txq_id == trans_pcie->txqs.cmd.q_id));
|
|
if (ret) {
|
|
IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id);
|
|
goto error;
|
|
}
|
|
trans_pcie->txqs.txq[txq_id]->id = txq_id;
|
|
set_bit(txq_id, trans_pcie->txqs.queue_used);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
iwl_txq_gen2_tx_free(trans);
|
|
return ret;
|
|
}
|
|
|
|
/*************** HOST COMMAND QUEUE FUNCTIONS *****/
|
|
|
|
/*
|
|
* iwl_pcie_gen2_enqueue_hcmd - enqueue a uCode command
|
|
* @priv: device private data point
|
|
* @cmd: a pointer to the ucode command structure
|
|
*
|
|
* The function returns < 0 values to indicate the operation
|
|
* failed. On success, it returns the index (>= 0) of command in the
|
|
* command queue.
|
|
*/
|
|
int iwl_pcie_gen2_enqueue_hcmd(struct iwl_trans *trans,
|
|
struct iwl_host_cmd *cmd)
|
|
{
|
|
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
|
|
struct iwl_txq *txq = trans_pcie->txqs.txq[trans_pcie->txqs.cmd.q_id];
|
|
struct iwl_device_cmd *out_cmd;
|
|
struct iwl_cmd_meta *out_meta;
|
|
void *dup_buf = NULL;
|
|
dma_addr_t phys_addr;
|
|
int i, cmd_pos, idx;
|
|
u16 copy_size, cmd_size, tb0_size;
|
|
bool had_nocopy = false;
|
|
u8 group_id = iwl_cmd_groupid(cmd->id);
|
|
const u8 *cmddata[IWL_MAX_CMD_TBS_PER_TFD];
|
|
u16 cmdlen[IWL_MAX_CMD_TBS_PER_TFD];
|
|
struct iwl_tfh_tfd *tfd;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON(cmd->flags & CMD_BLOCK_TXQS))
|
|
return -EINVAL;
|
|
|
|
copy_size = sizeof(struct iwl_cmd_header_wide);
|
|
cmd_size = sizeof(struct iwl_cmd_header_wide);
|
|
|
|
for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) {
|
|
cmddata[i] = cmd->data[i];
|
|
cmdlen[i] = cmd->len[i];
|
|
|
|
if (!cmd->len[i])
|
|
continue;
|
|
|
|
/* need at least IWL_FIRST_TB_SIZE copied */
|
|
if (copy_size < IWL_FIRST_TB_SIZE) {
|
|
int copy = IWL_FIRST_TB_SIZE - copy_size;
|
|
|
|
if (copy > cmdlen[i])
|
|
copy = cmdlen[i];
|
|
cmdlen[i] -= copy;
|
|
cmddata[i] += copy;
|
|
copy_size += copy;
|
|
}
|
|
|
|
if (cmd->dataflags[i] & IWL_HCMD_DFL_NOCOPY) {
|
|
had_nocopy = true;
|
|
if (WARN_ON(cmd->dataflags[i] & IWL_HCMD_DFL_DUP)) {
|
|
idx = -EINVAL;
|
|
goto free_dup_buf;
|
|
}
|
|
} else if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP) {
|
|
/*
|
|
* This is also a chunk that isn't copied
|
|
* to the static buffer so set had_nocopy.
|
|
*/
|
|
had_nocopy = true;
|
|
|
|
/* only allowed once */
|
|
if (WARN_ON(dup_buf)) {
|
|
idx = -EINVAL;
|
|
goto free_dup_buf;
|
|
}
|
|
|
|
dup_buf = kmemdup(cmddata[i], cmdlen[i],
|
|
GFP_ATOMIC);
|
|
if (!dup_buf)
|
|
return -ENOMEM;
|
|
} else {
|
|
/* NOCOPY must not be followed by normal! */
|
|
if (WARN_ON(had_nocopy)) {
|
|
idx = -EINVAL;
|
|
goto free_dup_buf;
|
|
}
|
|
copy_size += cmdlen[i];
|
|
}
|
|
cmd_size += cmd->len[i];
|
|
}
|
|
|
|
/*
|
|
* If any of the command structures end up being larger than the
|
|
* TFD_MAX_PAYLOAD_SIZE and they aren't dynamically allocated into
|
|
* separate TFDs, then we will need to increase the size of the buffers
|
|
*/
|
|
if (WARN(copy_size > TFD_MAX_PAYLOAD_SIZE,
|
|
"Command %s (%#x) is too large (%d bytes)\n",
|
|
iwl_get_cmd_string(trans, cmd->id), cmd->id, copy_size)) {
|
|
idx = -EINVAL;
|
|
goto free_dup_buf;
|
|
}
|
|
|
|
spin_lock_irqsave(&txq->lock, flags);
|
|
|
|
idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
|
tfd = iwl_txq_get_tfd(trans, txq, txq->write_ptr);
|
|
memset(tfd, 0, sizeof(*tfd));
|
|
|
|
if (iwl_txq_space(trans, txq) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
|
|
spin_unlock_irqrestore(&txq->lock, flags);
|
|
|
|
IWL_ERR(trans, "No space in command queue\n");
|
|
iwl_op_mode_cmd_queue_full(trans->op_mode);
|
|
idx = -ENOSPC;
|
|
goto free_dup_buf;
|
|
}
|
|
|
|
out_cmd = txq->entries[idx].cmd;
|
|
out_meta = &txq->entries[idx].meta;
|
|
|
|
/* re-initialize, this also marks the SG list as unused */
|
|
memset(out_meta, 0, sizeof(*out_meta));
|
|
if (cmd->flags & CMD_WANT_SKB)
|
|
out_meta->source = cmd;
|
|
|
|
/* set up the header */
|
|
out_cmd->hdr_wide.cmd = iwl_cmd_opcode(cmd->id);
|
|
out_cmd->hdr_wide.group_id = group_id;
|
|
out_cmd->hdr_wide.version = iwl_cmd_version(cmd->id);
|
|
out_cmd->hdr_wide.length =
|
|
cpu_to_le16(cmd_size - sizeof(struct iwl_cmd_header_wide));
|
|
out_cmd->hdr_wide.reserved = 0;
|
|
out_cmd->hdr_wide.sequence =
|
|
cpu_to_le16(QUEUE_TO_SEQ(trans_pcie->txqs.cmd.q_id) |
|
|
INDEX_TO_SEQ(txq->write_ptr));
|
|
|
|
cmd_pos = sizeof(struct iwl_cmd_header_wide);
|
|
copy_size = sizeof(struct iwl_cmd_header_wide);
|
|
|
|
/* and copy the data that needs to be copied */
|
|
for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) {
|
|
int copy;
|
|
|
|
if (!cmd->len[i])
|
|
continue;
|
|
|
|
/* copy everything if not nocopy/dup */
|
|
if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY |
|
|
IWL_HCMD_DFL_DUP))) {
|
|
copy = cmd->len[i];
|
|
|
|
memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy);
|
|
cmd_pos += copy;
|
|
copy_size += copy;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Otherwise we need at least IWL_FIRST_TB_SIZE copied
|
|
* in total (for bi-directional DMA), but copy up to what
|
|
* we can fit into the payload for debug dump purposes.
|
|
*/
|
|
copy = min_t(int, TFD_MAX_PAYLOAD_SIZE - cmd_pos, cmd->len[i]);
|
|
|
|
memcpy((u8 *)out_cmd + cmd_pos, cmd->data[i], copy);
|
|
cmd_pos += copy;
|
|
|
|
/* However, treat copy_size the proper way, we need it below */
|
|
if (copy_size < IWL_FIRST_TB_SIZE) {
|
|
copy = IWL_FIRST_TB_SIZE - copy_size;
|
|
|
|
if (copy > cmd->len[i])
|
|
copy = cmd->len[i];
|
|
copy_size += copy;
|
|
}
|
|
}
|
|
|
|
IWL_DEBUG_HC(trans,
|
|
"Sending command %s (%.2x.%.2x), seq: 0x%04X, %d bytes at %d[%d]:%d\n",
|
|
iwl_get_cmd_string(trans, cmd->id), group_id,
|
|
out_cmd->hdr.cmd, le16_to_cpu(out_cmd->hdr.sequence),
|
|
cmd_size, txq->write_ptr, idx, trans_pcie->txqs.cmd.q_id);
|
|
|
|
/* start the TFD with the minimum copy bytes */
|
|
tb0_size = min_t(int, copy_size, IWL_FIRST_TB_SIZE);
|
|
memcpy(&txq->first_tb_bufs[idx], out_cmd, tb0_size);
|
|
iwl_txq_gen2_set_tb(trans, tfd, iwl_txq_get_first_tb_dma(txq, idx),
|
|
tb0_size);
|
|
|
|
/* map first command fragment, if any remains */
|
|
if (copy_size > tb0_size) {
|
|
phys_addr = dma_map_single(trans->dev,
|
|
(u8 *)out_cmd + tb0_size,
|
|
copy_size - tb0_size,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(trans->dev, phys_addr)) {
|
|
idx = -ENOMEM;
|
|
iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd);
|
|
goto out;
|
|
}
|
|
iwl_txq_gen2_set_tb(trans, tfd, phys_addr,
|
|
copy_size - tb0_size);
|
|
}
|
|
|
|
/* map the remaining (adjusted) nocopy/dup fragments */
|
|
for (i = 0; i < IWL_MAX_CMD_TBS_PER_TFD; i++) {
|
|
void *data = (void *)(uintptr_t)cmddata[i];
|
|
|
|
if (!cmdlen[i])
|
|
continue;
|
|
if (!(cmd->dataflags[i] & (IWL_HCMD_DFL_NOCOPY |
|
|
IWL_HCMD_DFL_DUP)))
|
|
continue;
|
|
if (cmd->dataflags[i] & IWL_HCMD_DFL_DUP)
|
|
data = dup_buf;
|
|
phys_addr = dma_map_single(trans->dev, data,
|
|
cmdlen[i], DMA_TO_DEVICE);
|
|
if (dma_mapping_error(trans->dev, phys_addr)) {
|
|
idx = -ENOMEM;
|
|
iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd);
|
|
goto out;
|
|
}
|
|
iwl_txq_gen2_set_tb(trans, tfd, phys_addr, cmdlen[i]);
|
|
}
|
|
|
|
BUILD_BUG_ON(IWL_TFH_NUM_TBS > sizeof(out_meta->tbs) * BITS_PER_BYTE);
|
|
out_meta->flags = cmd->flags;
|
|
if (WARN_ON_ONCE(txq->entries[idx].free_buf))
|
|
kfree_sensitive(txq->entries[idx].free_buf);
|
|
txq->entries[idx].free_buf = dup_buf;
|
|
|
|
trace_iwlwifi_dev_hcmd(trans->dev, cmd, cmd_size, &out_cmd->hdr_wide);
|
|
|
|
/* start timer if queue currently empty */
|
|
if (txq->read_ptr == txq->write_ptr && txq->wd_timeout)
|
|
mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout);
|
|
|
|
spin_lock(&trans_pcie->reg_lock);
|
|
/* Increment and update queue's write index */
|
|
txq->write_ptr = iwl_txq_inc_wrap(trans, txq->write_ptr);
|
|
iwl_txq_inc_wr_ptr(trans, txq);
|
|
spin_unlock(&trans_pcie->reg_lock);
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&txq->lock, flags);
|
|
free_dup_buf:
|
|
if (idx < 0)
|
|
kfree(dup_buf);
|
|
return idx;
|
|
}
|