1851 lines
52 KiB
C
1851 lines
52 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/* Copyright (c) Tehuti Networks Ltd. */
|
|
|
|
#include <linux/bitfield.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/firmware.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/phylink.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <net/netdev_queues.h>
|
|
#include <net/page_pool/helpers.h>
|
|
|
|
#include "tn40.h"
|
|
|
|
#define TN40_SHORT_PACKET_SIZE 60
|
|
#define TN40_FIRMWARE_NAME "tehuti/bdx.bin"
|
|
|
|
static void tn40_enable_interrupts(struct tn40_priv *priv)
|
|
{
|
|
tn40_write_reg(priv, TN40_REG_IMR, priv->isr_mask);
|
|
}
|
|
|
|
static void tn40_disable_interrupts(struct tn40_priv *priv)
|
|
{
|
|
tn40_write_reg(priv, TN40_REG_IMR, 0);
|
|
}
|
|
|
|
static int tn40_fifo_alloc(struct tn40_priv *priv, struct tn40_fifo *f,
|
|
int fsz_type,
|
|
u16 reg_cfg0, u16 reg_cfg1,
|
|
u16 reg_rptr, u16 reg_wptr)
|
|
{
|
|
u16 memsz = TN40_FIFO_SIZE * (1 << fsz_type);
|
|
u64 cfg_base;
|
|
|
|
memset(f, 0, sizeof(struct tn40_fifo));
|
|
/* 1K extra space is allocated at the end of the fifo to simplify
|
|
* processing of descriptors that wraps around fifo's end.
|
|
*/
|
|
f->va = dma_alloc_coherent(&priv->pdev->dev,
|
|
memsz + TN40_FIFO_EXTRA_SPACE, &f->da,
|
|
GFP_KERNEL);
|
|
if (!f->va)
|
|
return -ENOMEM;
|
|
|
|
f->reg_cfg0 = reg_cfg0;
|
|
f->reg_cfg1 = reg_cfg1;
|
|
f->reg_rptr = reg_rptr;
|
|
f->reg_wptr = reg_wptr;
|
|
f->rptr = 0;
|
|
f->wptr = 0;
|
|
f->memsz = memsz;
|
|
f->size_mask = memsz - 1;
|
|
cfg_base = lower_32_bits((f->da & TN40_TX_RX_CFG0_BASE) | fsz_type);
|
|
tn40_write_reg(priv, reg_cfg0, cfg_base);
|
|
tn40_write_reg(priv, reg_cfg1, upper_32_bits(f->da));
|
|
return 0;
|
|
}
|
|
|
|
static void tn40_fifo_free(struct tn40_priv *priv, struct tn40_fifo *f)
|
|
{
|
|
dma_free_coherent(&priv->pdev->dev,
|
|
f->memsz + TN40_FIFO_EXTRA_SPACE, f->va, f->da);
|
|
}
|
|
|
|
static struct tn40_rxdb *tn40_rxdb_alloc(int nelem)
|
|
{
|
|
size_t size = sizeof(struct tn40_rxdb) + (nelem * sizeof(int)) +
|
|
(nelem * sizeof(struct tn40_rx_map));
|
|
struct tn40_rxdb *db;
|
|
int i;
|
|
|
|
db = vzalloc(size);
|
|
if (db) {
|
|
db->stack = (int *)(db + 1);
|
|
db->elems = (void *)(db->stack + nelem);
|
|
db->nelem = nelem;
|
|
db->top = nelem;
|
|
/* make the first alloc close to db struct */
|
|
for (i = 0; i < nelem; i++)
|
|
db->stack[i] = nelem - i - 1;
|
|
}
|
|
return db;
|
|
}
|
|
|
|
static void tn40_rxdb_free(struct tn40_rxdb *db)
|
|
{
|
|
vfree(db);
|
|
}
|
|
|
|
static int tn40_rxdb_alloc_elem(struct tn40_rxdb *db)
|
|
{
|
|
return db->stack[--db->top];
|
|
}
|
|
|
|
static void *tn40_rxdb_addr_elem(struct tn40_rxdb *db, unsigned int n)
|
|
{
|
|
return db->elems + n;
|
|
}
|
|
|
|
static int tn40_rxdb_available(struct tn40_rxdb *db)
|
|
{
|
|
return db->top;
|
|
}
|
|
|
|
static void tn40_rxdb_free_elem(struct tn40_rxdb *db, unsigned int n)
|
|
{
|
|
db->stack[db->top++] = n;
|
|
}
|
|
|
|
/**
|
|
* tn40_create_rx_ring - Initialize RX all related HW and SW resources
|
|
* @priv: NIC private structure
|
|
*
|
|
* create_rx_ring creates rxf and rxd fifos, updates the relevant HW registers,
|
|
* preallocates skbs for rx. It assumes that Rx is disabled in HW funcs are
|
|
* grouped for better cache usage
|
|
*
|
|
* RxD fifo is smaller then RxF fifo by design. Upon high load, RxD will be
|
|
* filled and packets will be dropped by the NIC without getting into the host
|
|
* or generating interrupts. In this situation the host has no chance of
|
|
* processing all the packets. Dropping packets by the NIC is cheaper, since it
|
|
* takes 0 CPU cycles.
|
|
*
|
|
* Return: 0 on success and negative value on error.
|
|
*/
|
|
static int tn40_create_rx_ring(struct tn40_priv *priv)
|
|
{
|
|
struct page_pool_params pp = {
|
|
.dev = &priv->pdev->dev,
|
|
.napi = &priv->napi,
|
|
.dma_dir = DMA_FROM_DEVICE,
|
|
.netdev = priv->ndev,
|
|
.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
|
|
.max_len = PAGE_SIZE,
|
|
};
|
|
int ret, pkt_size, nr;
|
|
|
|
priv->page_pool = page_pool_create(&pp);
|
|
if (IS_ERR(priv->page_pool))
|
|
return PTR_ERR(priv->page_pool);
|
|
|
|
ret = tn40_fifo_alloc(priv, &priv->rxd_fifo0.m, priv->rxd_size,
|
|
TN40_REG_RXD_CFG0_0, TN40_REG_RXD_CFG1_0,
|
|
TN40_REG_RXD_RPTR_0, TN40_REG_RXD_WPTR_0);
|
|
if (ret)
|
|
goto err_destroy_page_pool;
|
|
|
|
ret = tn40_fifo_alloc(priv, &priv->rxf_fifo0.m, priv->rxf_size,
|
|
TN40_REG_RXF_CFG0_0, TN40_REG_RXF_CFG1_0,
|
|
TN40_REG_RXF_RPTR_0, TN40_REG_RXF_WPTR_0);
|
|
if (ret)
|
|
goto err_free_rxd;
|
|
|
|
pkt_size = priv->ndev->mtu + VLAN_ETH_HLEN;
|
|
priv->rxf_fifo0.m.pktsz = pkt_size;
|
|
nr = priv->rxf_fifo0.m.memsz / sizeof(struct tn40_rxf_desc);
|
|
priv->rxdb0 = tn40_rxdb_alloc(nr);
|
|
if (!priv->rxdb0) {
|
|
ret = -ENOMEM;
|
|
goto err_free_rxf;
|
|
}
|
|
return 0;
|
|
err_free_rxf:
|
|
tn40_fifo_free(priv, &priv->rxf_fifo0.m);
|
|
err_free_rxd:
|
|
tn40_fifo_free(priv, &priv->rxd_fifo0.m);
|
|
err_destroy_page_pool:
|
|
page_pool_destroy(priv->page_pool);
|
|
return ret;
|
|
}
|
|
|
|
static void tn40_rx_free_buffers(struct tn40_priv *priv)
|
|
{
|
|
struct tn40_rxdb *db = priv->rxdb0;
|
|
struct tn40_rx_map *dm;
|
|
u16 i;
|
|
|
|
netdev_dbg(priv->ndev, "total =%d free =%d busy =%d\n", db->nelem,
|
|
tn40_rxdb_available(db),
|
|
db->nelem - tn40_rxdb_available(db));
|
|
|
|
for (i = 0; i < db->nelem; i++) {
|
|
dm = tn40_rxdb_addr_elem(db, i);
|
|
if (dm->page)
|
|
page_pool_put_full_page(priv->page_pool, dm->page,
|
|
false);
|
|
}
|
|
}
|
|
|
|
static void tn40_destroy_rx_ring(struct tn40_priv *priv)
|
|
{
|
|
if (priv->rxdb0) {
|
|
tn40_rx_free_buffers(priv);
|
|
tn40_rxdb_free(priv->rxdb0);
|
|
priv->rxdb0 = NULL;
|
|
}
|
|
tn40_fifo_free(priv, &priv->rxf_fifo0.m);
|
|
tn40_fifo_free(priv, &priv->rxd_fifo0.m);
|
|
page_pool_destroy(priv->page_pool);
|
|
}
|
|
|
|
static void tn40_set_rx_desc(struct tn40_priv *priv, int idx, u64 dma)
|
|
{
|
|
struct tn40_rxf_fifo *f = &priv->rxf_fifo0;
|
|
struct tn40_rxf_desc *rxfd;
|
|
int delta;
|
|
|
|
rxfd = (struct tn40_rxf_desc *)(f->m.va + f->m.wptr);
|
|
rxfd->info = cpu_to_le32(0x10003); /* INFO =1 BC =3 */
|
|
rxfd->va_lo = cpu_to_le32(idx);
|
|
rxfd->pa_lo = cpu_to_le32(lower_32_bits(dma));
|
|
rxfd->pa_hi = cpu_to_le32(upper_32_bits(dma));
|
|
rxfd->len = cpu_to_le32(f->m.pktsz);
|
|
f->m.wptr += sizeof(struct tn40_rxf_desc);
|
|
delta = f->m.wptr - f->m.memsz;
|
|
if (unlikely(delta >= 0)) {
|
|
f->m.wptr = delta;
|
|
if (delta > 0) {
|
|
memcpy(f->m.va, f->m.va + f->m.memsz, delta);
|
|
netdev_dbg(priv->ndev,
|
|
"wrapped rxd descriptor\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tn40_rx_alloc_buffers - Fill rxf fifo with buffers.
|
|
*
|
|
* @priv: NIC's private structure
|
|
*
|
|
* rx_alloc_buffers allocates buffers via the page pool API, builds rxf descs
|
|
* and pushes them (rxf descr) into the rxf fifo. The pages are stored in rxdb.
|
|
* To calculate the free space, we uses the cached values of RPTR and WPTR
|
|
* when needed. This function also updates RPTR and WPTR.
|
|
*/
|
|
static void tn40_rx_alloc_buffers(struct tn40_priv *priv)
|
|
{
|
|
struct tn40_rxf_fifo *f = &priv->rxf_fifo0;
|
|
struct tn40_rxdb *db = priv->rxdb0;
|
|
struct tn40_rx_map *dm;
|
|
struct page *page;
|
|
int dno, i, idx;
|
|
|
|
dno = tn40_rxdb_available(db) - 1;
|
|
for (i = dno; i > 0; i--) {
|
|
page = page_pool_dev_alloc_pages(priv->page_pool);
|
|
if (!page)
|
|
break;
|
|
|
|
idx = tn40_rxdb_alloc_elem(db);
|
|
tn40_set_rx_desc(priv, idx, page_pool_get_dma_addr(page));
|
|
dm = tn40_rxdb_addr_elem(db, idx);
|
|
dm->page = page;
|
|
}
|
|
if (i != dno)
|
|
tn40_write_reg(priv, f->m.reg_wptr,
|
|
f->m.wptr & TN40_TXF_WPTR_WR_PTR);
|
|
netdev_dbg(priv->ndev, "write_reg 0x%04x f->m.reg_wptr 0x%x\n",
|
|
f->m.reg_wptr, f->m.wptr & TN40_TXF_WPTR_WR_PTR);
|
|
netdev_dbg(priv->ndev, "read_reg 0x%04x f->m.reg_rptr=0x%x\n",
|
|
f->m.reg_rptr, tn40_read_reg(priv, f->m.reg_rptr));
|
|
netdev_dbg(priv->ndev, "write_reg 0x%04x f->m.reg_wptr=0x%x\n",
|
|
f->m.reg_wptr, tn40_read_reg(priv, f->m.reg_wptr));
|
|
}
|
|
|
|
static void tn40_recycle_rx_buffer(struct tn40_priv *priv,
|
|
struct tn40_rxd_desc *rxdd)
|
|
{
|
|
struct tn40_rxf_fifo *f = &priv->rxf_fifo0;
|
|
struct tn40_rx_map *dm;
|
|
int idx;
|
|
|
|
idx = le32_to_cpu(rxdd->va_lo);
|
|
dm = tn40_rxdb_addr_elem(priv->rxdb0, idx);
|
|
tn40_set_rx_desc(priv, idx, page_pool_get_dma_addr(dm->page));
|
|
|
|
tn40_write_reg(priv, f->m.reg_wptr, f->m.wptr & TN40_TXF_WPTR_WR_PTR);
|
|
}
|
|
|
|
static int tn40_rx_receive(struct tn40_priv *priv, int budget)
|
|
{
|
|
struct tn40_rxd_fifo *f = &priv->rxd_fifo0;
|
|
u32 rxd_val1, rxd_err, pkt_id;
|
|
int tmp_len, size, done = 0;
|
|
struct tn40_rxdb *db = NULL;
|
|
struct tn40_rxd_desc *rxdd;
|
|
struct tn40_rx_map *dm;
|
|
struct sk_buff *skb;
|
|
u16 len, rxd_vlan;
|
|
int idx;
|
|
|
|
f->m.wptr = tn40_read_reg(priv, f->m.reg_wptr) & TN40_TXF_WPTR_WR_PTR;
|
|
size = f->m.wptr - f->m.rptr;
|
|
if (size < 0)
|
|
size += f->m.memsz; /* Size is negative :-) */
|
|
|
|
while (size > 0) {
|
|
rxdd = (struct tn40_rxd_desc *)(f->m.va + f->m.rptr);
|
|
db = priv->rxdb0;
|
|
|
|
/* We have a chicken and egg problem here. If the
|
|
* descriptor is wrapped we first need to copy the tail
|
|
* of the descriptor to the end of the buffer before
|
|
* extracting values from the descriptor. However in
|
|
* order to know if the descriptor is wrapped we need to
|
|
* obtain the length of the descriptor from (the
|
|
* wrapped) descriptor. Luckily the length is the first
|
|
* word of the descriptor. Descriptor lengths are
|
|
* multiples of 8 bytes so in case of a wrapped
|
|
* descriptor the first 8 bytes guaranteed to appear
|
|
* before the end of the buffer. We first obtain the
|
|
* length, we then copy the rest of the descriptor if
|
|
* needed and then extract the rest of the values from
|
|
* the descriptor.
|
|
*
|
|
* Do not change the order of operations as it will
|
|
* break the code!!!
|
|
*/
|
|
rxd_val1 = le32_to_cpu(rxdd->rxd_val1);
|
|
tmp_len = TN40_GET_RXD_BC(rxd_val1) << 3;
|
|
pkt_id = TN40_GET_RXD_PKT_ID(rxd_val1);
|
|
size -= tmp_len;
|
|
/* CHECK FOR A PARTIALLY ARRIVED DESCRIPTOR */
|
|
if (size < 0) {
|
|
netdev_dbg(priv->ndev,
|
|
"%s partially arrived desc tmp_len %d\n",
|
|
__func__, tmp_len);
|
|
break;
|
|
}
|
|
/* make sure that the descriptor fully is arrived
|
|
* before reading the rest of the descriptor.
|
|
*/
|
|
rmb();
|
|
|
|
/* A special treatment is given to non-contiguous
|
|
* descriptors that start near the end, wraps around
|
|
* and continue at the beginning. The second part is
|
|
* copied right after the first, and then descriptor
|
|
* is interpreted as normal. The fifo has an extra
|
|
* space to allow such operations.
|
|
*/
|
|
|
|
/* HAVE WE REACHED THE END OF THE QUEUE? */
|
|
f->m.rptr += tmp_len;
|
|
tmp_len = f->m.rptr - f->m.memsz;
|
|
if (unlikely(tmp_len >= 0)) {
|
|
f->m.rptr = tmp_len;
|
|
if (tmp_len > 0) {
|
|
/* COPY PARTIAL DESCRIPTOR
|
|
* TO THE END OF THE QUEUE
|
|
*/
|
|
netdev_dbg(priv->ndev,
|
|
"wrapped desc rptr=%d tmp_len=%d\n",
|
|
f->m.rptr, tmp_len);
|
|
memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
|
|
}
|
|
}
|
|
idx = le32_to_cpu(rxdd->va_lo);
|
|
dm = tn40_rxdb_addr_elem(db, idx);
|
|
prefetch(dm);
|
|
|
|
len = le16_to_cpu(rxdd->len);
|
|
rxd_vlan = le16_to_cpu(rxdd->rxd_vlan);
|
|
/* CHECK FOR ERRORS */
|
|
rxd_err = TN40_GET_RXD_ERR(rxd_val1);
|
|
if (unlikely(rxd_err)) {
|
|
u64_stats_update_begin(&priv->syncp);
|
|
priv->stats.rx_errors++;
|
|
u64_stats_update_end(&priv->syncp);
|
|
tn40_recycle_rx_buffer(priv, rxdd);
|
|
continue;
|
|
}
|
|
|
|
skb = napi_build_skb(page_address(dm->page), PAGE_SIZE);
|
|
if (!skb) {
|
|
u64_stats_update_begin(&priv->syncp);
|
|
priv->stats.rx_dropped++;
|
|
priv->alloc_fail++;
|
|
u64_stats_update_end(&priv->syncp);
|
|
tn40_recycle_rx_buffer(priv, rxdd);
|
|
break;
|
|
}
|
|
skb_mark_for_recycle(skb);
|
|
skb_put(skb, len);
|
|
skb->protocol = eth_type_trans(skb, priv->ndev);
|
|
skb->ip_summed =
|
|
(pkt_id == 0) ? CHECKSUM_NONE : CHECKSUM_UNNECESSARY;
|
|
if (TN40_GET_RXD_VTAG(rxd_val1))
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
|
|
TN40_GET_RXD_VLAN_TCI(rxd_vlan));
|
|
|
|
dm->page = NULL;
|
|
tn40_rxdb_free_elem(db, idx);
|
|
|
|
napi_gro_receive(&priv->napi, skb);
|
|
|
|
u64_stats_update_begin(&priv->syncp);
|
|
priv->stats.rx_bytes += len;
|
|
u64_stats_update_end(&priv->syncp);
|
|
|
|
if (unlikely(++done >= budget))
|
|
break;
|
|
}
|
|
u64_stats_update_begin(&priv->syncp);
|
|
priv->stats.rx_packets += done;
|
|
u64_stats_update_end(&priv->syncp);
|
|
/* FIXME: Do something to minimize pci accesses */
|
|
tn40_write_reg(priv, f->m.reg_rptr, f->m.rptr & TN40_TXF_WPTR_WR_PTR);
|
|
tn40_rx_alloc_buffers(priv);
|
|
return done;
|
|
}
|
|
|
|
/* TX HW/SW interaction overview
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* There are 2 types of TX communication channels between driver and NIC.
|
|
* 1) TX Free Fifo - TXF - Holds ack descriptors for sent packets.
|
|
* 2) TX Data Fifo - TXD - Holds descriptors of full buffers.
|
|
*
|
|
* Currently the NIC supports TSO, checksumming and gather DMA
|
|
* UFO and IP fragmentation is on the way.
|
|
*
|
|
* RX SW Data Structures
|
|
* ~~~~~~~~~~~~~~~~~~~~~
|
|
* TXDB is used to keep track of all skbs owned by SW and their DMA addresses.
|
|
* For TX case, ownership lasts from getting the packet via hard_xmit and
|
|
* until the HW acknowledges sending the packet by TXF descriptors.
|
|
* TXDB is implemented as a cyclic buffer.
|
|
*
|
|
* FIFO objects keep info about the fifo's size and location, relevant HW
|
|
* registers, usage and skb db. Each RXD and RXF fifo has their own fifo
|
|
* structure. Implemented as simple struct.
|
|
*
|
|
* TX SW Execution Flow
|
|
* ~~~~~~~~~~~~~~~~~~~~
|
|
* OS calls the driver's hard_xmit method with a packet to send. The driver
|
|
* creates DMA mappings, builds TXD descriptors and kicks the HW by updating
|
|
* TXD WPTR.
|
|
*
|
|
* When a packet is sent, The HW write a TXF descriptor and the SW
|
|
* frees the original skb. To prevent TXD fifo overflow without
|
|
* reading HW registers every time, the SW deploys "tx level"
|
|
* technique. Upon startup, the tx level is initialized to TXD fifo
|
|
* length. For every sent packet, the SW gets its TXD descriptor size
|
|
* (from a pre-calculated array) and subtracts it from tx level. The
|
|
* size is also stored in txdb. When a TXF ack arrives, the SW fetched
|
|
* the size of the original TXD descriptor from the txdb and adds it
|
|
* to the tx level. When the Tx level drops below some predefined
|
|
* threshold, the driver stops the TX queue. When the TX level rises
|
|
* above that level, the tx queue is enabled again.
|
|
*
|
|
* This technique avoids excessive reading of RPTR and WPTR registers.
|
|
* As our benchmarks shows, it adds 1.5 Gbit/sec to NIC's throughput.
|
|
*/
|
|
static void tn40_do_tx_db_ptr_next(struct tn40_txdb *db,
|
|
struct tn40_tx_map **pptr)
|
|
{
|
|
++*pptr;
|
|
if (unlikely(*pptr == db->end))
|
|
*pptr = db->start;
|
|
}
|
|
|
|
static void tn40_tx_db_inc_rptr(struct tn40_txdb *db)
|
|
{
|
|
tn40_do_tx_db_ptr_next(db, &db->rptr);
|
|
}
|
|
|
|
static void tn40_tx_db_inc_wptr(struct tn40_txdb *db)
|
|
{
|
|
tn40_do_tx_db_ptr_next(db, &db->wptr);
|
|
}
|
|
|
|
static int tn40_tx_db_init(struct tn40_txdb *d, int sz_type)
|
|
{
|
|
int memsz = TN40_FIFO_SIZE * (1 << (sz_type + 1));
|
|
|
|
d->start = vzalloc(memsz);
|
|
if (!d->start)
|
|
return -ENOMEM;
|
|
/* In order to differentiate between an empty db state and a full db
|
|
* state at least one element should always be empty in order to
|
|
* avoid rptr == wptr, which means that the db is empty.
|
|
*/
|
|
d->size = memsz / sizeof(struct tn40_tx_map) - 1;
|
|
d->end = d->start + d->size + 1; /* just after last element */
|
|
|
|
/* All dbs are created empty */
|
|
d->rptr = d->start;
|
|
d->wptr = d->start;
|
|
return 0;
|
|
}
|
|
|
|
static void tn40_tx_db_close(struct tn40_txdb *d)
|
|
{
|
|
if (d->start) {
|
|
vfree(d->start);
|
|
d->start = NULL;
|
|
}
|
|
}
|
|
|
|
/* Sizes of tx desc (including padding if needed) as function of the SKB's
|
|
* frag number
|
|
* 7 - is number of lwords in txd with one phys buffer
|
|
* 3 - is number of lwords used for every additional phys buffer
|
|
* for (i = 0; i < TN40_MAX_PBL; i++) {
|
|
* lwords = 7 + (i * 3);
|
|
* if (lwords & 1)
|
|
* lwords++; pad it with 1 lword
|
|
* tn40_txd_sizes[i].bytes = lwords << 2;
|
|
* tn40_txd_sizes[i].qwords = lwords >> 1;
|
|
* }
|
|
*/
|
|
static struct {
|
|
u16 bytes;
|
|
u16 qwords; /* qword = 64 bit */
|
|
} tn40_txd_sizes[] = {
|
|
{0x20, 0x04},
|
|
{0x28, 0x05},
|
|
{0x38, 0x07},
|
|
{0x40, 0x08},
|
|
{0x50, 0x0a},
|
|
{0x58, 0x0b},
|
|
{0x68, 0x0d},
|
|
{0x70, 0x0e},
|
|
{0x80, 0x10},
|
|
{0x88, 0x11},
|
|
{0x98, 0x13},
|
|
{0xa0, 0x14},
|
|
{0xb0, 0x16},
|
|
{0xb8, 0x17},
|
|
{0xc8, 0x19},
|
|
{0xd0, 0x1a},
|
|
{0xe0, 0x1c},
|
|
{0xe8, 0x1d},
|
|
{0xf8, 0x1f},
|
|
};
|
|
|
|
static void tn40_pbl_set(struct tn40_pbl *pbl, dma_addr_t dma, int len)
|
|
{
|
|
pbl->len = cpu_to_le32(len);
|
|
pbl->pa_lo = cpu_to_le32(lower_32_bits(dma));
|
|
pbl->pa_hi = cpu_to_le32(upper_32_bits(dma));
|
|
}
|
|
|
|
static void tn40_txdb_set(struct tn40_txdb *db, dma_addr_t dma, int len)
|
|
{
|
|
db->wptr->len = len;
|
|
db->wptr->addr.dma = dma;
|
|
}
|
|
|
|
struct tn40_mapping_info {
|
|
dma_addr_t dma;
|
|
size_t size;
|
|
};
|
|
|
|
/**
|
|
* tn40_tx_map_skb - create and store DMA mappings for skb's data blocks
|
|
* @priv: NIC private structure
|
|
* @skb: socket buffer to map
|
|
* @txdd: pointer to tx descriptor to be updated
|
|
* @pkt_len: pointer to unsigned long value
|
|
*
|
|
* This function creates DMA mappings for skb's data blocks and writes them to
|
|
* PBL of a new tx descriptor. It also stores them in the tx db, so they could
|
|
* be unmapped after the data has been sent. It is the responsibility of the
|
|
* caller to make sure that there is enough space in the txdb. The last
|
|
* element holds a pointer to skb itself and is marked with a zero length.
|
|
*
|
|
* Return: 0 on success and negative value on error.
|
|
*/
|
|
static int tn40_tx_map_skb(struct tn40_priv *priv, struct sk_buff *skb,
|
|
struct tn40_txd_desc *txdd, unsigned int *pkt_len)
|
|
{
|
|
struct tn40_mapping_info info[TN40_MAX_PBL];
|
|
int nr_frags = skb_shinfo(skb)->nr_frags;
|
|
struct tn40_pbl *pbl = &txdd->pbl[0];
|
|
struct tn40_txdb *db = &priv->txdb;
|
|
unsigned int size;
|
|
int i, len, ret;
|
|
dma_addr_t dma;
|
|
|
|
netdev_dbg(priv->ndev, "TX skb %p skbLen %d dataLen %d frags %d\n", skb,
|
|
skb->len, skb->data_len, nr_frags);
|
|
if (nr_frags > TN40_MAX_PBL - 1) {
|
|
ret = skb_linearize(skb);
|
|
if (ret)
|
|
return ret;
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
}
|
|
/* initial skb */
|
|
len = skb->len - skb->data_len;
|
|
dma = dma_map_single(&priv->pdev->dev, skb->data, len,
|
|
DMA_TO_DEVICE);
|
|
ret = dma_mapping_error(&priv->pdev->dev, dma);
|
|
if (ret)
|
|
return ret;
|
|
|
|
tn40_txdb_set(db, dma, len);
|
|
tn40_pbl_set(pbl++, db->wptr->addr.dma, db->wptr->len);
|
|
*pkt_len = db->wptr->len;
|
|
|
|
for (i = 0; i < nr_frags; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
size = skb_frag_size(frag);
|
|
dma = skb_frag_dma_map(&priv->pdev->dev, frag, 0,
|
|
size, DMA_TO_DEVICE);
|
|
|
|
ret = dma_mapping_error(&priv->pdev->dev, dma);
|
|
if (ret)
|
|
goto mapping_error;
|
|
info[i].dma = dma;
|
|
info[i].size = size;
|
|
}
|
|
|
|
for (i = 0; i < nr_frags; i++) {
|
|
tn40_tx_db_inc_wptr(db);
|
|
tn40_txdb_set(db, info[i].dma, info[i].size);
|
|
tn40_pbl_set(pbl++, db->wptr->addr.dma, db->wptr->len);
|
|
*pkt_len += db->wptr->len;
|
|
}
|
|
|
|
/* SHORT_PKT_FIX */
|
|
if (skb->len < TN40_SHORT_PACKET_SIZE)
|
|
++nr_frags;
|
|
|
|
/* Add skb clean up info. */
|
|
tn40_tx_db_inc_wptr(db);
|
|
db->wptr->len = -tn40_txd_sizes[nr_frags].bytes;
|
|
db->wptr->addr.skb = skb;
|
|
tn40_tx_db_inc_wptr(db);
|
|
|
|
return 0;
|
|
mapping_error:
|
|
dma_unmap_page(&priv->pdev->dev, db->wptr->addr.dma, db->wptr->len,
|
|
DMA_TO_DEVICE);
|
|
for (; i > 0; i--)
|
|
dma_unmap_page(&priv->pdev->dev, info[i - 1].dma,
|
|
info[i - 1].size, DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int tn40_create_tx_ring(struct tn40_priv *priv)
|
|
{
|
|
int ret;
|
|
|
|
ret = tn40_fifo_alloc(priv, &priv->txd_fifo0.m, priv->txd_size,
|
|
TN40_REG_TXD_CFG0_0, TN40_REG_TXD_CFG1_0,
|
|
TN40_REG_TXD_RPTR_0, TN40_REG_TXD_WPTR_0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = tn40_fifo_alloc(priv, &priv->txf_fifo0.m, priv->txf_size,
|
|
TN40_REG_TXF_CFG0_0, TN40_REG_TXF_CFG1_0,
|
|
TN40_REG_TXF_RPTR_0, TN40_REG_TXF_WPTR_0);
|
|
if (ret)
|
|
goto err_free_txd;
|
|
|
|
/* The TX db has to keep mappings for all packets sent (on
|
|
* TxD) and not yet reclaimed (on TxF).
|
|
*/
|
|
ret = tn40_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size));
|
|
if (ret)
|
|
goto err_free_txf;
|
|
|
|
/* SHORT_PKT_FIX */
|
|
priv->b0_len = 64;
|
|
priv->b0_va = dma_alloc_coherent(&priv->pdev->dev, priv->b0_len,
|
|
&priv->b0_dma, GFP_KERNEL);
|
|
if (!priv->b0_va)
|
|
goto err_free_db;
|
|
|
|
priv->tx_level = TN40_MAX_TX_LEVEL;
|
|
priv->tx_update_mark = priv->tx_level - 1024;
|
|
return 0;
|
|
err_free_db:
|
|
tn40_tx_db_close(&priv->txdb);
|
|
err_free_txf:
|
|
tn40_fifo_free(priv, &priv->txf_fifo0.m);
|
|
err_free_txd:
|
|
tn40_fifo_free(priv, &priv->txd_fifo0.m);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* tn40_tx_space - Calculate the available space in the TX fifo.
|
|
* @priv: NIC private structure
|
|
*
|
|
* Return: available space in TX fifo in bytes
|
|
*/
|
|
static int tn40_tx_space(struct tn40_priv *priv)
|
|
{
|
|
struct tn40_txd_fifo *f = &priv->txd_fifo0;
|
|
int fsize;
|
|
|
|
f->m.rptr = tn40_read_reg(priv, f->m.reg_rptr) & TN40_TXF_WPTR_WR_PTR;
|
|
fsize = f->m.rptr - f->m.wptr;
|
|
if (fsize <= 0)
|
|
fsize = f->m.memsz + fsize;
|
|
return fsize;
|
|
}
|
|
|
|
#define TN40_TXD_FULL_CHECKSUM 7
|
|
|
|
static netdev_tx_t tn40_start_xmit(struct sk_buff *skb, struct net_device *ndev)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
struct tn40_txd_fifo *f = &priv->txd_fifo0;
|
|
int txd_checksum = TN40_TXD_FULL_CHECKSUM;
|
|
struct tn40_txd_desc *txdd;
|
|
int nr_frags, len, err;
|
|
unsigned int pkt_len;
|
|
int txd_vlan_id = 0;
|
|
int txd_lgsnd = 0;
|
|
int txd_vtag = 0;
|
|
int txd_mss = 0;
|
|
|
|
/* Build tx descriptor */
|
|
txdd = (struct tn40_txd_desc *)(f->m.va + f->m.wptr);
|
|
err = tn40_tx_map_skb(priv, skb, txdd, &pkt_len);
|
|
if (err) {
|
|
u64_stats_update_begin(&priv->syncp);
|
|
priv->stats.tx_dropped++;
|
|
u64_stats_update_end(&priv->syncp);
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
nr_frags = skb_shinfo(skb)->nr_frags;
|
|
if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
|
|
txd_checksum = 0;
|
|
|
|
if (skb_shinfo(skb)->gso_size) {
|
|
txd_mss = skb_shinfo(skb)->gso_size;
|
|
txd_lgsnd = 1;
|
|
netdev_dbg(priv->ndev, "skb %p pkt len %d gso size = %d\n", skb,
|
|
pkt_len, txd_mss);
|
|
}
|
|
if (skb_vlan_tag_present(skb)) {
|
|
/* Don't cut VLAN ID to 12 bits */
|
|
txd_vlan_id = skb_vlan_tag_get(skb);
|
|
txd_vtag = 1;
|
|
}
|
|
txdd->va_hi = 0;
|
|
txdd->va_lo = 0;
|
|
txdd->length = cpu_to_le16(pkt_len);
|
|
txdd->mss = cpu_to_le16(txd_mss);
|
|
txdd->txd_val1 =
|
|
cpu_to_le32(TN40_TXD_W1_VAL
|
|
(tn40_txd_sizes[nr_frags].qwords, txd_checksum,
|
|
txd_vtag, txd_lgsnd, txd_vlan_id));
|
|
netdev_dbg(priv->ndev, "=== w1 qwords[%d] %d =====\n", nr_frags,
|
|
tn40_txd_sizes[nr_frags].qwords);
|
|
netdev_dbg(priv->ndev, "=== TxD desc =====================\n");
|
|
netdev_dbg(priv->ndev, "=== w1: 0x%x ================\n",
|
|
txdd->txd_val1);
|
|
netdev_dbg(priv->ndev, "=== w2: mss 0x%x len 0x%x\n", txdd->mss,
|
|
txdd->length);
|
|
/* SHORT_PKT_FIX */
|
|
if (pkt_len < TN40_SHORT_PACKET_SIZE) {
|
|
struct tn40_pbl *pbl = &txdd->pbl[++nr_frags];
|
|
|
|
txdd->length = cpu_to_le16(TN40_SHORT_PACKET_SIZE);
|
|
txdd->txd_val1 =
|
|
cpu_to_le32(TN40_TXD_W1_VAL
|
|
(tn40_txd_sizes[nr_frags].qwords,
|
|
txd_checksum, txd_vtag, txd_lgsnd,
|
|
txd_vlan_id));
|
|
pbl->len = cpu_to_le32(TN40_SHORT_PACKET_SIZE - pkt_len);
|
|
pbl->pa_lo = cpu_to_le32(lower_32_bits(priv->b0_dma));
|
|
pbl->pa_hi = cpu_to_le32(upper_32_bits(priv->b0_dma));
|
|
netdev_dbg(priv->ndev, "=== SHORT_PKT_FIX ==============\n");
|
|
netdev_dbg(priv->ndev, "=== nr_frags : %d ==============\n",
|
|
nr_frags);
|
|
}
|
|
|
|
/* Increment TXD write pointer. In case of fifo wrapping copy
|
|
* reminder of the descriptor to the beginning.
|
|
*/
|
|
f->m.wptr += tn40_txd_sizes[nr_frags].bytes;
|
|
len = f->m.wptr - f->m.memsz;
|
|
if (unlikely(len >= 0)) {
|
|
f->m.wptr = len;
|
|
if (len > 0)
|
|
memcpy(f->m.va, f->m.va + f->m.memsz, len);
|
|
}
|
|
/* Force memory writes to complete before letting the HW know
|
|
* there are new descriptors to fetch.
|
|
*/
|
|
wmb();
|
|
|
|
priv->tx_level -= tn40_txd_sizes[nr_frags].bytes;
|
|
if (priv->tx_level > priv->tx_update_mark) {
|
|
tn40_write_reg(priv, f->m.reg_wptr,
|
|
f->m.wptr & TN40_TXF_WPTR_WR_PTR);
|
|
} else {
|
|
if (priv->tx_noupd++ > TN40_NO_UPD_PACKETS) {
|
|
priv->tx_noupd = 0;
|
|
tn40_write_reg(priv, f->m.reg_wptr,
|
|
f->m.wptr & TN40_TXF_WPTR_WR_PTR);
|
|
}
|
|
}
|
|
|
|
u64_stats_update_begin(&priv->syncp);
|
|
priv->stats.tx_packets++;
|
|
priv->stats.tx_bytes += pkt_len;
|
|
u64_stats_update_end(&priv->syncp);
|
|
if (priv->tx_level < TN40_MIN_TX_LEVEL) {
|
|
netdev_dbg(priv->ndev, "TX Q STOP level %d\n", priv->tx_level);
|
|
netif_stop_queue(ndev);
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static void tn40_tx_cleanup(struct tn40_priv *priv)
|
|
{
|
|
struct tn40_txf_fifo *f = &priv->txf_fifo0;
|
|
struct tn40_txdb *db = &priv->txdb;
|
|
int tx_level = 0;
|
|
|
|
f->m.wptr = tn40_read_reg(priv, f->m.reg_wptr) & TN40_TXF_WPTR_MASK;
|
|
|
|
netif_tx_lock(priv->ndev);
|
|
while (f->m.wptr != f->m.rptr) {
|
|
f->m.rptr += TN40_TXF_DESC_SZ;
|
|
f->m.rptr &= f->m.size_mask;
|
|
/* Unmap all fragments */
|
|
/* First has to come tx_maps containing DMA */
|
|
do {
|
|
dma_addr_t addr = db->rptr->addr.dma;
|
|
size_t size = db->rptr->len;
|
|
|
|
netif_tx_unlock(priv->ndev);
|
|
dma_unmap_page(&priv->pdev->dev, addr,
|
|
size, DMA_TO_DEVICE);
|
|
netif_tx_lock(priv->ndev);
|
|
tn40_tx_db_inc_rptr(db);
|
|
} while (db->rptr->len > 0);
|
|
tx_level -= db->rptr->len; /* '-' Because the len is negative */
|
|
|
|
/* Now should come skb pointer - free it */
|
|
dev_kfree_skb_any(db->rptr->addr.skb);
|
|
netdev_dbg(priv->ndev, "dev_kfree_skb_any %p %d\n",
|
|
db->rptr->addr.skb, -db->rptr->len);
|
|
tn40_tx_db_inc_rptr(db);
|
|
}
|
|
|
|
/* Let the HW know which TXF descriptors were cleaned */
|
|
tn40_write_reg(priv, f->m.reg_rptr, f->m.rptr & TN40_TXF_WPTR_WR_PTR);
|
|
|
|
/* We reclaimed resources, so in case the Q is stopped by xmit
|
|
* callback, we resume the transmission and use tx_lock to
|
|
* synchronize with xmit.
|
|
*/
|
|
priv->tx_level += tx_level;
|
|
if (priv->tx_noupd) {
|
|
priv->tx_noupd = 0;
|
|
tn40_write_reg(priv, priv->txd_fifo0.m.reg_wptr,
|
|
priv->txd_fifo0.m.wptr & TN40_TXF_WPTR_WR_PTR);
|
|
}
|
|
if (unlikely(netif_queue_stopped(priv->ndev) &&
|
|
netif_carrier_ok(priv->ndev) &&
|
|
(priv->tx_level >= TN40_MAX_TX_LEVEL / 2))) {
|
|
netdev_dbg(priv->ndev, "TX Q WAKE level %d\n", priv->tx_level);
|
|
netif_wake_queue(priv->ndev);
|
|
}
|
|
netif_tx_unlock(priv->ndev);
|
|
}
|
|
|
|
static void tn40_tx_free_skbs(struct tn40_priv *priv)
|
|
{
|
|
struct tn40_txdb *db = &priv->txdb;
|
|
|
|
while (db->rptr != db->wptr) {
|
|
if (likely(db->rptr->len))
|
|
dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
|
|
db->rptr->len, DMA_TO_DEVICE);
|
|
else
|
|
dev_kfree_skb(db->rptr->addr.skb);
|
|
tn40_tx_db_inc_rptr(db);
|
|
}
|
|
}
|
|
|
|
static void tn40_destroy_tx_ring(struct tn40_priv *priv)
|
|
{
|
|
tn40_tx_free_skbs(priv);
|
|
tn40_fifo_free(priv, &priv->txd_fifo0.m);
|
|
tn40_fifo_free(priv, &priv->txf_fifo0.m);
|
|
tn40_tx_db_close(&priv->txdb);
|
|
/* SHORT_PKT_FIX */
|
|
if (priv->b0_len) {
|
|
dma_free_coherent(&priv->pdev->dev, priv->b0_len, priv->b0_va,
|
|
priv->b0_dma);
|
|
priv->b0_len = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* tn40_tx_push_desc - Push a descriptor to TxD fifo.
|
|
*
|
|
* @priv: NIC private structure
|
|
* @data: desc's data
|
|
* @size: desc's size
|
|
*
|
|
* This function pushes desc to TxD fifo and overlaps it if needed.
|
|
*
|
|
* This function does not check for available space, nor does it check
|
|
* that the data size is smaller than the fifo size. Checking for
|
|
* space is the responsibility of the caller.
|
|
*/
|
|
static void tn40_tx_push_desc(struct tn40_priv *priv, void *data, int size)
|
|
{
|
|
struct tn40_txd_fifo *f = &priv->txd_fifo0;
|
|
int i = f->m.memsz - f->m.wptr;
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
if (i > size) {
|
|
memcpy(f->m.va + f->m.wptr, data, size);
|
|
f->m.wptr += size;
|
|
} else {
|
|
memcpy(f->m.va + f->m.wptr, data, i);
|
|
f->m.wptr = size - i;
|
|
memcpy(f->m.va, data + i, f->m.wptr);
|
|
}
|
|
tn40_write_reg(priv, f->m.reg_wptr, f->m.wptr & TN40_TXF_WPTR_WR_PTR);
|
|
}
|
|
|
|
/**
|
|
* tn40_tx_push_desc_safe - push descriptor to TxD fifo in a safe way.
|
|
*
|
|
* @priv: NIC private structure
|
|
* @data: descriptor data
|
|
* @size: descriptor size
|
|
*
|
|
* This function does check for available space and, if necessary,
|
|
* waits for the NIC to read existing data before writing new data.
|
|
*/
|
|
static void tn40_tx_push_desc_safe(struct tn40_priv *priv, void *data, int size)
|
|
{
|
|
int timer = 0;
|
|
|
|
while (size > 0) {
|
|
/* We subtract 8 because when the fifo is full rptr ==
|
|
* wptr, which also means that fifo is empty, we can
|
|
* understand the difference, but could the HW do the
|
|
* same ???
|
|
*/
|
|
int avail = tn40_tx_space(priv) - 8;
|
|
|
|
if (avail <= 0) {
|
|
if (timer++ > 300) /* Prevent endless loop */
|
|
break;
|
|
/* Give the HW a chance to clean the fifo */
|
|
usleep_range(50, 60);
|
|
continue;
|
|
}
|
|
avail = min(avail, size);
|
|
netdev_dbg(priv->ndev,
|
|
"about to push %d bytes starting %p size %d\n",
|
|
avail, data, size);
|
|
tn40_tx_push_desc(priv, data, avail);
|
|
size -= avail;
|
|
data += avail;
|
|
}
|
|
}
|
|
|
|
int tn40_set_link_speed(struct tn40_priv *priv, u32 speed)
|
|
{
|
|
u32 val;
|
|
int i;
|
|
|
|
netdev_dbg(priv->ndev, "speed %d\n", speed);
|
|
switch (speed) {
|
|
case SPEED_10000:
|
|
case SPEED_5000:
|
|
case SPEED_2500:
|
|
netdev_dbg(priv->ndev, "link_speed %d\n", speed);
|
|
|
|
tn40_write_reg(priv, 0x1010, 0x217); /*ETHSD.REFCLK_CONF */
|
|
tn40_write_reg(priv, 0x104c, 0x4c); /*ETHSD.L0_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1050, 0x4c); /*ETHSD.L1_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1054, 0x4c); /*ETHSD.L2_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1058, 0x4c); /*ETHSD.L3_RX_PCNT */
|
|
tn40_write_reg(priv, 0x102c, 0x434); /*ETHSD.L0_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1030, 0x434); /*ETHSD.L1_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1034, 0x434); /*ETHSD.L2_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1038, 0x434); /*ETHSD.L3_TX_PCNT */
|
|
tn40_write_reg(priv, 0x6300, 0x0400); /*MAC.PCS_CTRL */
|
|
|
|
tn40_write_reg(priv, 0x1018, 0x00); /*Mike2 */
|
|
udelay(5);
|
|
tn40_write_reg(priv, 0x1018, 0x04); /*Mike2 */
|
|
udelay(5);
|
|
tn40_write_reg(priv, 0x1018, 0x06); /*Mike2 */
|
|
udelay(5);
|
|
/*MikeFix1 */
|
|
/*L0: 0x103c , L1: 0x1040 , L2: 0x1044 , L3: 0x1048 =0x81644 */
|
|
tn40_write_reg(priv, 0x103c, 0x81644); /*ETHSD.L0_TX_DCNT */
|
|
tn40_write_reg(priv, 0x1040, 0x81644); /*ETHSD.L1_TX_DCNT */
|
|
tn40_write_reg(priv, 0x1044, 0x81644); /*ETHSD.L2_TX_DCNT */
|
|
tn40_write_reg(priv, 0x1048, 0x81644); /*ETHSD.L3_TX_DCNT */
|
|
tn40_write_reg(priv, 0x1014, 0x043); /*ETHSD.INIT_STAT */
|
|
for (i = 1000; i; i--) {
|
|
usleep_range(50, 60);
|
|
/*ETHSD.INIT_STAT */
|
|
val = tn40_read_reg(priv, 0x1014);
|
|
if (val & (1 << 9)) {
|
|
/*ETHSD.INIT_STAT */
|
|
tn40_write_reg(priv, 0x1014, 0x3);
|
|
/*ETHSD.INIT_STAT */
|
|
val = tn40_read_reg(priv, 0x1014);
|
|
|
|
break;
|
|
}
|
|
}
|
|
if (!i)
|
|
netdev_err(priv->ndev, "MAC init timeout!\n");
|
|
|
|
tn40_write_reg(priv, 0x6350, 0x0); /*MAC.PCS_IF_MODE */
|
|
tn40_write_reg(priv, TN40_REG_CTRLST, 0xC13); /*0x93//0x13 */
|
|
tn40_write_reg(priv, 0x111c, 0x7ff); /*MAC.MAC_RST_CNT */
|
|
usleep_range(2000, 2100);
|
|
|
|
tn40_write_reg(priv, 0x111c, 0x0); /*MAC.MAC_RST_CNT */
|
|
break;
|
|
|
|
case SPEED_1000:
|
|
case SPEED_100:
|
|
tn40_write_reg(priv, 0x1010, 0x613); /*ETHSD.REFCLK_CONF */
|
|
tn40_write_reg(priv, 0x104c, 0x4d); /*ETHSD.L0_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1050, 0x0); /*ETHSD.L1_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1054, 0x0); /*ETHSD.L2_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1058, 0x0); /*ETHSD.L3_RX_PCNT */
|
|
tn40_write_reg(priv, 0x102c, 0x35); /*ETHSD.L0_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1030, 0x0); /*ETHSD.L1_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1034, 0x0); /*ETHSD.L2_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1038, 0x0); /*ETHSD.L3_TX_PCNT */
|
|
tn40_write_reg(priv, 0x6300, 0x01140); /*MAC.PCS_CTRL */
|
|
|
|
tn40_write_reg(priv, 0x1014, 0x043); /*ETHSD.INIT_STAT */
|
|
for (i = 1000; i; i--) {
|
|
usleep_range(50, 60);
|
|
val = tn40_read_reg(priv, 0x1014); /*ETHSD.INIT_STAT */
|
|
if (val & (1 << 9)) {
|
|
/*ETHSD.INIT_STAT */
|
|
tn40_write_reg(priv, 0x1014, 0x3);
|
|
/*ETHSD.INIT_STAT */
|
|
val = tn40_read_reg(priv, 0x1014);
|
|
|
|
break;
|
|
}
|
|
}
|
|
if (!i)
|
|
netdev_err(priv->ndev, "MAC init timeout!\n");
|
|
|
|
tn40_write_reg(priv, 0x6350, 0x2b); /*MAC.PCS_IF_MODE 1g */
|
|
tn40_write_reg(priv, 0x6310, 0x9801); /*MAC.PCS_DEV_AB */
|
|
|
|
tn40_write_reg(priv, 0x6314, 0x1); /*MAC.PCS_PART_AB */
|
|
tn40_write_reg(priv, 0x6348, 0xc8); /*MAC.PCS_LINK_LO */
|
|
tn40_write_reg(priv, 0x634c, 0xc8); /*MAC.PCS_LINK_HI */
|
|
usleep_range(50, 60);
|
|
tn40_write_reg(priv, TN40_REG_CTRLST, 0xC13); /*0x93//0x13 */
|
|
tn40_write_reg(priv, 0x111c, 0x7ff); /*MAC.MAC_RST_CNT */
|
|
usleep_range(2000, 2100);
|
|
|
|
tn40_write_reg(priv, 0x111c, 0x0); /*MAC.MAC_RST_CNT */
|
|
tn40_write_reg(priv, 0x6300, 0x1140); /*MAC.PCS_CTRL */
|
|
break;
|
|
|
|
case 0: /* Link down */
|
|
tn40_write_reg(priv, 0x104c, 0x0); /*ETHSD.L0_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1050, 0x0); /*ETHSD.L1_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1054, 0x0); /*ETHSD.L2_RX_PCNT */
|
|
tn40_write_reg(priv, 0x1058, 0x0); /*ETHSD.L3_RX_PCNT */
|
|
tn40_write_reg(priv, 0x102c, 0x0); /*ETHSD.L0_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1030, 0x0); /*ETHSD.L1_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1034, 0x0); /*ETHSD.L2_TX_PCNT */
|
|
tn40_write_reg(priv, 0x1038, 0x0); /*ETHSD.L3_TX_PCNT */
|
|
|
|
tn40_write_reg(priv, TN40_REG_CTRLST, 0x800);
|
|
tn40_write_reg(priv, 0x111c, 0x7ff); /*MAC.MAC_RST_CNT */
|
|
usleep_range(2000, 2100);
|
|
|
|
tn40_write_reg(priv, 0x111c, 0x0); /*MAC.MAC_RST_CNT */
|
|
break;
|
|
|
|
default:
|
|
netdev_err(priv->ndev,
|
|
"Link speed was not identified yet (%d)\n", speed);
|
|
speed = 0;
|
|
break;
|
|
}
|
|
return speed;
|
|
}
|
|
|
|
static void tn40_link_changed(struct tn40_priv *priv)
|
|
{
|
|
u32 link = tn40_read_reg(priv,
|
|
TN40_REG_MAC_LNK_STAT) & TN40_MAC_LINK_STAT;
|
|
|
|
netdev_dbg(priv->ndev, "link changed %u\n", link);
|
|
}
|
|
|
|
static void tn40_isr_extra(struct tn40_priv *priv, u32 isr)
|
|
{
|
|
if (isr & (TN40_IR_LNKCHG0 | TN40_IR_LNKCHG1 | TN40_IR_TMR0)) {
|
|
netdev_dbg(priv->ndev, "isr = 0x%x\n", isr);
|
|
tn40_link_changed(priv);
|
|
}
|
|
}
|
|
|
|
static irqreturn_t tn40_isr_napi(int irq, void *dev)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv((struct net_device *)dev);
|
|
u32 isr;
|
|
|
|
isr = tn40_read_reg(priv, TN40_REG_ISR_MSK0);
|
|
|
|
if (unlikely(!isr)) {
|
|
tn40_enable_interrupts(priv);
|
|
return IRQ_NONE; /* Not our interrupt */
|
|
}
|
|
|
|
if (isr & TN40_IR_EXTRA)
|
|
tn40_isr_extra(priv, isr);
|
|
|
|
if (isr & (TN40_IR_RX_DESC_0 | TN40_IR_TX_FREE_0 | TN40_IR_TMR1)) {
|
|
if (likely(napi_schedule_prep(&priv->napi))) {
|
|
__napi_schedule(&priv->napi);
|
|
return IRQ_HANDLED;
|
|
}
|
|
/* We get here if an interrupt has slept into the
|
|
* small time window between these lines in
|
|
* tn40_poll: tn40_enable_interrupts(priv); return 0;
|
|
*
|
|
* Currently interrupts are disabled (since we read
|
|
* the ISR register) and we have failed to register
|
|
* the next poll. So we read the regs to trigger the
|
|
* chip and allow further interrupts.
|
|
*/
|
|
tn40_read_reg(priv, TN40_REG_TXF_WPTR_0);
|
|
tn40_read_reg(priv, TN40_REG_RXD_WPTR_0);
|
|
}
|
|
|
|
tn40_enable_interrupts(priv);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int tn40_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct tn40_priv *priv = container_of(napi, struct tn40_priv, napi);
|
|
int work_done;
|
|
|
|
tn40_tx_cleanup(priv);
|
|
|
|
if (!budget)
|
|
return 0;
|
|
|
|
work_done = tn40_rx_receive(priv, budget);
|
|
if (work_done == budget)
|
|
return budget;
|
|
|
|
if (napi_complete_done(napi, work_done))
|
|
tn40_enable_interrupts(priv);
|
|
return work_done;
|
|
}
|
|
|
|
static int tn40_fw_load(struct tn40_priv *priv)
|
|
{
|
|
const struct firmware *fw = NULL;
|
|
int master, ret;
|
|
u32 val;
|
|
|
|
ret = request_firmware(&fw, TN40_FIRMWARE_NAME, &priv->pdev->dev);
|
|
if (ret)
|
|
return ret;
|
|
|
|
master = tn40_read_reg(priv, TN40_REG_INIT_SEMAPHORE);
|
|
if (!tn40_read_reg(priv, TN40_REG_INIT_STATUS) && master) {
|
|
netdev_dbg(priv->ndev, "Loading FW...\n");
|
|
tn40_tx_push_desc_safe(priv, (void *)fw->data, fw->size);
|
|
msleep(100);
|
|
}
|
|
ret = read_poll_timeout(tn40_read_reg, val, val, 2000, 400000, false,
|
|
priv, TN40_REG_INIT_STATUS);
|
|
if (master)
|
|
tn40_write_reg(priv, TN40_REG_INIT_SEMAPHORE, 1);
|
|
|
|
if (ret) {
|
|
netdev_err(priv->ndev, "firmware loading failed\n");
|
|
netdev_dbg(priv->ndev, "VPC: 0x%x VIC: 0x%x STATUS: 0x%xd\n",
|
|
tn40_read_reg(priv, TN40_REG_VPC),
|
|
tn40_read_reg(priv, TN40_REG_VIC),
|
|
tn40_read_reg(priv, TN40_REG_INIT_STATUS));
|
|
ret = -EIO;
|
|
} else {
|
|
netdev_dbg(priv->ndev, "firmware loading success\n");
|
|
}
|
|
release_firmware(fw);
|
|
return ret;
|
|
}
|
|
|
|
static void tn40_restore_mac(struct net_device *ndev, struct tn40_priv *priv)
|
|
{
|
|
u32 val;
|
|
|
|
netdev_dbg(priv->ndev, "mac0 =%x mac1 =%x mac2 =%x\n",
|
|
tn40_read_reg(priv, TN40_REG_UNC_MAC0_A),
|
|
tn40_read_reg(priv, TN40_REG_UNC_MAC1_A),
|
|
tn40_read_reg(priv, TN40_REG_UNC_MAC2_A));
|
|
|
|
val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
|
|
tn40_write_reg(priv, TN40_REG_UNC_MAC2_A, val);
|
|
val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
|
|
tn40_write_reg(priv, TN40_REG_UNC_MAC1_A, val);
|
|
val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
|
|
tn40_write_reg(priv, TN40_REG_UNC_MAC0_A, val);
|
|
|
|
/* More then IP MAC address */
|
|
tn40_write_reg(priv, TN40_REG_MAC_ADDR_0,
|
|
(ndev->dev_addr[3] << 24) | (ndev->dev_addr[2] << 16) |
|
|
(ndev->dev_addr[1] << 8) | (ndev->dev_addr[0]));
|
|
tn40_write_reg(priv, TN40_REG_MAC_ADDR_1,
|
|
(ndev->dev_addr[5] << 8) | (ndev->dev_addr[4]));
|
|
|
|
netdev_dbg(priv->ndev, "mac0 =%x mac1 =%x mac2 =%x\n",
|
|
tn40_read_reg(priv, TN40_REG_UNC_MAC0_A),
|
|
tn40_read_reg(priv, TN40_REG_UNC_MAC1_A),
|
|
tn40_read_reg(priv, TN40_REG_UNC_MAC2_A));
|
|
}
|
|
|
|
static void tn40_hw_start(struct tn40_priv *priv)
|
|
{
|
|
tn40_write_reg(priv, TN40_REG_FRM_LENGTH, 0X3FE0);
|
|
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A, 0X10fd);
|
|
/*MikeFix1 */
|
|
/*L0: 0x103c , L1: 0x1040 , L2: 0x1044 , L3: 0x1048 =0x81644 */
|
|
tn40_write_reg(priv, 0x103c, 0x81644); /*ETHSD.L0_TX_DCNT */
|
|
tn40_write_reg(priv, 0x1040, 0x81644); /*ETHSD.L1_TX_DCNT */
|
|
tn40_write_reg(priv, 0x1044, 0x81644); /*ETHSD.L2_TX_DCNT */
|
|
tn40_write_reg(priv, 0x1048, 0x81644); /*ETHSD.L3_TX_DCNT */
|
|
tn40_write_reg(priv, TN40_REG_RX_FIFO_SECTION, 0x10);
|
|
tn40_write_reg(priv, TN40_REG_TX_FIFO_SECTION, 0xE00010);
|
|
tn40_write_reg(priv, TN40_REG_RX_FULLNESS, 0);
|
|
tn40_write_reg(priv, TN40_REG_TX_FULLNESS, 0);
|
|
|
|
tn40_write_reg(priv, TN40_REG_VGLB, 0);
|
|
tn40_write_reg(priv, TN40_REG_MAX_FRAME_A,
|
|
priv->rxf_fifo0.m.pktsz & TN40_MAX_FRAME_AB_VAL);
|
|
tn40_write_reg(priv, TN40_REG_RDINTCM0, priv->rdintcm);
|
|
tn40_write_reg(priv, TN40_REG_RDINTCM2, 0);
|
|
|
|
/* old val = 0x300064 */
|
|
tn40_write_reg(priv, TN40_REG_TDINTCM0, priv->tdintcm);
|
|
|
|
/* Enable timer interrupt once in 2 secs. */
|
|
tn40_restore_mac(priv->ndev, priv);
|
|
|
|
/* Pause frame */
|
|
tn40_write_reg(priv, 0x12E0, 0x28);
|
|
tn40_write_reg(priv, TN40_REG_PAUSE_QUANT, 0xFFFF);
|
|
tn40_write_reg(priv, 0x6064, 0xF);
|
|
|
|
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A,
|
|
TN40_GMAC_RX_FILTER_OSEN | TN40_GMAC_RX_FILTER_TXFC |
|
|
TN40_GMAC_RX_FILTER_AM | TN40_GMAC_RX_FILTER_AB);
|
|
|
|
tn40_enable_interrupts(priv);
|
|
}
|
|
|
|
static int tn40_hw_reset(struct tn40_priv *priv)
|
|
{
|
|
u32 val;
|
|
|
|
/* Reset sequences: read, write 1, read, write 0 */
|
|
val = tn40_read_reg(priv, TN40_REG_CLKPLL);
|
|
tn40_write_reg(priv, TN40_REG_CLKPLL, (val | TN40_CLKPLL_SFTRST) + 0x8);
|
|
usleep_range(50, 60);
|
|
val = tn40_read_reg(priv, TN40_REG_CLKPLL);
|
|
tn40_write_reg(priv, TN40_REG_CLKPLL, val & ~TN40_CLKPLL_SFTRST);
|
|
|
|
/* Check that the PLLs are locked and reset ended */
|
|
val = read_poll_timeout(tn40_read_reg, val,
|
|
(val & TN40_CLKPLL_LKD) == TN40_CLKPLL_LKD,
|
|
10000, 700000, false, priv, TN40_REG_CLKPLL);
|
|
if (val)
|
|
return -EIO;
|
|
|
|
usleep_range(50, 60);
|
|
/* Do any PCI-E read transaction */
|
|
tn40_read_reg(priv, TN40_REG_RXD_CFG0_0);
|
|
return 0;
|
|
}
|
|
|
|
static void tn40_sw_reset(struct tn40_priv *priv)
|
|
{
|
|
int i, ret;
|
|
u32 val;
|
|
|
|
/* 1. load MAC (obsolete) */
|
|
/* 2. disable Rx (and Tx) */
|
|
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A, 0);
|
|
msleep(100);
|
|
/* 3. Disable port */
|
|
tn40_write_reg(priv, TN40_REG_DIS_PORT, 1);
|
|
/* 4. Disable queue */
|
|
tn40_write_reg(priv, TN40_REG_DIS_QU, 1);
|
|
/* 5. Wait until hw is disabled */
|
|
ret = read_poll_timeout(tn40_read_reg, val, val & 1, 10000, 500000,
|
|
false, priv, TN40_REG_RST_PORT);
|
|
if (ret)
|
|
netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
|
|
|
|
/* 6. Disable interrupts */
|
|
tn40_write_reg(priv, TN40_REG_RDINTCM0, 0);
|
|
tn40_write_reg(priv, TN40_REG_TDINTCM0, 0);
|
|
tn40_write_reg(priv, TN40_REG_IMR, 0);
|
|
tn40_read_reg(priv, TN40_REG_ISR);
|
|
|
|
/* 7. Reset queue */
|
|
tn40_write_reg(priv, TN40_REG_RST_QU, 1);
|
|
/* 8. Reset port */
|
|
tn40_write_reg(priv, TN40_REG_RST_PORT, 1);
|
|
/* 9. Zero all read and write pointers */
|
|
for (i = TN40_REG_TXD_WPTR_0; i <= TN40_REG_TXF_RPTR_3; i += 0x10)
|
|
tn40_write_reg(priv, i, 0);
|
|
/* 10. Unset port disable */
|
|
tn40_write_reg(priv, TN40_REG_DIS_PORT, 0);
|
|
/* 11. Unset queue disable */
|
|
tn40_write_reg(priv, TN40_REG_DIS_QU, 0);
|
|
/* 12. Unset queue reset */
|
|
tn40_write_reg(priv, TN40_REG_RST_QU, 0);
|
|
/* 13. Unset port reset */
|
|
tn40_write_reg(priv, TN40_REG_RST_PORT, 0);
|
|
/* 14. Enable Rx */
|
|
/* Skipped. will be done later */
|
|
}
|
|
|
|
static int tn40_start(struct tn40_priv *priv)
|
|
{
|
|
int ret;
|
|
|
|
ret = tn40_create_tx_ring(priv);
|
|
if (ret) {
|
|
netdev_err(priv->ndev, "failed to tx init %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = tn40_create_rx_ring(priv);
|
|
if (ret) {
|
|
netdev_err(priv->ndev, "failed to rx init %d\n", ret);
|
|
goto err_tx_ring;
|
|
}
|
|
|
|
tn40_rx_alloc_buffers(priv);
|
|
if (tn40_rxdb_available(priv->rxdb0) != 1) {
|
|
ret = -ENOMEM;
|
|
netdev_err(priv->ndev, "failed to allocate rx buffers\n");
|
|
goto err_rx_ring;
|
|
}
|
|
|
|
ret = request_irq(priv->pdev->irq, &tn40_isr_napi, IRQF_SHARED,
|
|
priv->ndev->name, priv->ndev);
|
|
if (ret) {
|
|
netdev_err(priv->ndev, "failed to request irq %d\n", ret);
|
|
goto err_rx_ring;
|
|
}
|
|
|
|
tn40_hw_start(priv);
|
|
return 0;
|
|
err_rx_ring:
|
|
tn40_destroy_rx_ring(priv);
|
|
err_tx_ring:
|
|
tn40_destroy_tx_ring(priv);
|
|
return ret;
|
|
}
|
|
|
|
static void tn40_stop(struct tn40_priv *priv)
|
|
{
|
|
tn40_disable_interrupts(priv);
|
|
free_irq(priv->pdev->irq, priv->ndev);
|
|
tn40_sw_reset(priv);
|
|
tn40_destroy_tx_ring(priv);
|
|
tn40_destroy_rx_ring(priv);
|
|
}
|
|
|
|
static int tn40_close(struct net_device *ndev)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
|
|
phylink_stop(priv->phylink);
|
|
phylink_disconnect_phy(priv->phylink);
|
|
|
|
napi_disable(&priv->napi);
|
|
netif_napi_del(&priv->napi);
|
|
tn40_stop(priv);
|
|
return 0;
|
|
}
|
|
|
|
static int tn40_open(struct net_device *dev)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(dev);
|
|
int ret;
|
|
|
|
ret = phylink_connect_phy(priv->phylink, priv->phydev);
|
|
if (ret) {
|
|
netdev_err(dev, "failed to connect to phy %d\n", ret);
|
|
return ret;
|
|
}
|
|
tn40_sw_reset(priv);
|
|
ret = tn40_start(priv);
|
|
if (ret) {
|
|
phylink_disconnect_phy(priv->phylink);
|
|
netdev_err(dev, "failed to start %d\n", ret);
|
|
return ret;
|
|
}
|
|
napi_enable(&priv->napi);
|
|
phylink_start(priv->phylink);
|
|
netif_start_queue(priv->ndev);
|
|
return 0;
|
|
}
|
|
|
|
static void __tn40_vlan_rx_vid(struct net_device *ndev, uint16_t vid,
|
|
int enable)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
u32 reg, bit, val;
|
|
|
|
netdev_dbg(priv->ndev, "vid =%d value =%d\n", (int)vid, enable);
|
|
reg = TN40_REG_VLAN_0 + (vid / 32) * 4;
|
|
bit = 1 << vid % 32;
|
|
val = tn40_read_reg(priv, reg);
|
|
netdev_dbg(priv->ndev, "reg =%x, val =%x, bit =%d\n", reg, val, bit);
|
|
if (enable)
|
|
val |= bit;
|
|
else
|
|
val &= ~bit;
|
|
netdev_dbg(priv->ndev, "new val %x\n", val);
|
|
tn40_write_reg(priv, reg, val);
|
|
}
|
|
|
|
static int tn40_vlan_rx_add_vid(struct net_device *ndev,
|
|
__always_unused __be16 proto, u16 vid)
|
|
{
|
|
__tn40_vlan_rx_vid(ndev, vid, 1);
|
|
return 0;
|
|
}
|
|
|
|
static int tn40_vlan_rx_kill_vid(struct net_device *ndev,
|
|
__always_unused __be16 proto, u16 vid)
|
|
{
|
|
__tn40_vlan_rx_vid(ndev, vid, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void tn40_setmulti(struct net_device *ndev)
|
|
{
|
|
u32 rxf_val = TN40_GMAC_RX_FILTER_AM | TN40_GMAC_RX_FILTER_AB |
|
|
TN40_GMAC_RX_FILTER_OSEN | TN40_GMAC_RX_FILTER_TXFC;
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
int i;
|
|
|
|
/* IMF - imperfect (hash) rx multicast filter */
|
|
/* PMF - perfect rx multicast filter */
|
|
|
|
/* FIXME: RXE(OFF) */
|
|
if (ndev->flags & IFF_PROMISC) {
|
|
rxf_val |= TN40_GMAC_RX_FILTER_PRM;
|
|
} else if (ndev->flags & IFF_ALLMULTI) {
|
|
/* set IMF to accept all multicast frames */
|
|
for (i = 0; i < TN40_MAC_MCST_HASH_NUM; i++)
|
|
tn40_write_reg(priv,
|
|
TN40_REG_RX_MCST_HASH0 + i * 4, ~0);
|
|
} else if (netdev_mc_count(ndev)) {
|
|
struct netdev_hw_addr *mclist;
|
|
u32 reg, val;
|
|
u8 hash;
|
|
|
|
/* Set IMF to deny all multicast frames */
|
|
for (i = 0; i < TN40_MAC_MCST_HASH_NUM; i++)
|
|
tn40_write_reg(priv,
|
|
TN40_REG_RX_MCST_HASH0 + i * 4, 0);
|
|
|
|
/* Set PMF to deny all multicast frames */
|
|
for (i = 0; i < TN40_MAC_MCST_NUM; i++) {
|
|
tn40_write_reg(priv,
|
|
TN40_REG_RX_MAC_MCST0 + i * 8, 0);
|
|
tn40_write_reg(priv,
|
|
TN40_REG_RX_MAC_MCST1 + i * 8, 0);
|
|
}
|
|
/* Use PMF to accept first MAC_MCST_NUM (15) addresses */
|
|
|
|
/* TBD: Sort the addresses and write them in ascending
|
|
* order into RX_MAC_MCST regs. we skip this phase now
|
|
* and accept ALL multicast frames through IMF. Accept
|
|
* the rest of addresses throw IMF.
|
|
*/
|
|
netdev_for_each_mc_addr(mclist, ndev) {
|
|
hash = 0;
|
|
for (i = 0; i < ETH_ALEN; i++)
|
|
hash ^= mclist->addr[i];
|
|
|
|
reg = TN40_REG_RX_MCST_HASH0 + ((hash >> 5) << 2);
|
|
val = tn40_read_reg(priv, reg);
|
|
val |= (1 << (hash % 32));
|
|
tn40_write_reg(priv, reg, val);
|
|
}
|
|
} else {
|
|
rxf_val |= TN40_GMAC_RX_FILTER_AB;
|
|
}
|
|
tn40_write_reg(priv, TN40_REG_GMAC_RXF_A, rxf_val);
|
|
/* Enable RX */
|
|
/* FIXME: RXE(ON) */
|
|
}
|
|
|
|
static int tn40_set_mac(struct net_device *ndev, void *p)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
struct sockaddr *addr = p;
|
|
|
|
eth_hw_addr_set(ndev, addr->sa_data);
|
|
tn40_restore_mac(ndev, priv);
|
|
return 0;
|
|
}
|
|
|
|
static void tn40_mac_init(struct tn40_priv *priv)
|
|
{
|
|
u8 addr[ETH_ALEN];
|
|
u64 val;
|
|
|
|
val = (u64)tn40_read_reg(priv, TN40_REG_UNC_MAC0_A);
|
|
val |= (u64)tn40_read_reg(priv, TN40_REG_UNC_MAC1_A) << 16;
|
|
val |= (u64)tn40_read_reg(priv, TN40_REG_UNC_MAC2_A) << 32;
|
|
|
|
u64_to_ether_addr(val, addr);
|
|
eth_hw_addr_set(priv->ndev, addr);
|
|
}
|
|
|
|
static void tn40_get_stats(struct net_device *ndev,
|
|
struct rtnl_link_stats64 *stats)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
unsigned int start;
|
|
|
|
do {
|
|
start = u64_stats_fetch_begin(&priv->syncp);
|
|
stats->tx_packets = priv->stats.tx_packets;
|
|
stats->tx_bytes = priv->stats.tx_bytes;
|
|
stats->tx_dropped = priv->stats.tx_dropped;
|
|
|
|
stats->rx_packets = priv->stats.rx_packets;
|
|
stats->rx_bytes = priv->stats.rx_bytes;
|
|
stats->rx_dropped = priv->stats.rx_dropped;
|
|
stats->rx_errors = priv->stats.rx_errors;
|
|
} while (u64_stats_fetch_retry(&priv->syncp, start));
|
|
}
|
|
|
|
static const struct net_device_ops tn40_netdev_ops = {
|
|
.ndo_open = tn40_open,
|
|
.ndo_stop = tn40_close,
|
|
.ndo_start_xmit = tn40_start_xmit,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_rx_mode = tn40_setmulti,
|
|
.ndo_get_stats64 = tn40_get_stats,
|
|
.ndo_set_mac_address = tn40_set_mac,
|
|
.ndo_vlan_rx_add_vid = tn40_vlan_rx_add_vid,
|
|
.ndo_vlan_rx_kill_vid = tn40_vlan_rx_kill_vid,
|
|
};
|
|
|
|
static int tn40_ethtool_get_link_ksettings(struct net_device *ndev,
|
|
struct ethtool_link_ksettings *cmd)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
|
|
return phylink_ethtool_ksettings_get(priv->phylink, cmd);
|
|
}
|
|
|
|
static const struct ethtool_ops tn40_ethtool_ops = {
|
|
.get_link = ethtool_op_get_link,
|
|
.get_link_ksettings = tn40_ethtool_get_link_ksettings,
|
|
};
|
|
|
|
static void tn40_get_queue_stats_rx(struct net_device *ndev, int idx,
|
|
struct netdev_queue_stats_rx *stats)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
unsigned int start;
|
|
|
|
do {
|
|
start = u64_stats_fetch_begin(&priv->syncp);
|
|
|
|
stats->packets = priv->stats.rx_packets;
|
|
stats->bytes = priv->stats.rx_bytes;
|
|
stats->alloc_fail = priv->alloc_fail;
|
|
} while (u64_stats_fetch_retry(&priv->syncp, start));
|
|
}
|
|
|
|
static void tn40_get_queue_stats_tx(struct net_device *ndev, int idx,
|
|
struct netdev_queue_stats_tx *stats)
|
|
{
|
|
struct tn40_priv *priv = netdev_priv(ndev);
|
|
unsigned int start;
|
|
|
|
do {
|
|
start = u64_stats_fetch_begin(&priv->syncp);
|
|
|
|
stats->packets = priv->stats.tx_packets;
|
|
stats->bytes = priv->stats.tx_bytes;
|
|
} while (u64_stats_fetch_retry(&priv->syncp, start));
|
|
}
|
|
|
|
static void tn40_get_base_stats(struct net_device *ndev,
|
|
struct netdev_queue_stats_rx *rx,
|
|
struct netdev_queue_stats_tx *tx)
|
|
{
|
|
rx->packets = 0;
|
|
rx->bytes = 0;
|
|
rx->alloc_fail = 0;
|
|
|
|
tx->packets = 0;
|
|
tx->bytes = 0;
|
|
}
|
|
|
|
static const struct netdev_stat_ops tn40_stat_ops = {
|
|
.get_queue_stats_rx = tn40_get_queue_stats_rx,
|
|
.get_queue_stats_tx = tn40_get_queue_stats_tx,
|
|
.get_base_stats = tn40_get_base_stats,
|
|
};
|
|
|
|
static int tn40_priv_init(struct tn40_priv *priv)
|
|
{
|
|
int ret;
|
|
|
|
tn40_set_link_speed(priv, 0);
|
|
|
|
/* Set GPIO[9:0] to output 0 */
|
|
tn40_write_reg(priv, 0x51E0, 0x30010006); /* GPIO_OE_ WR CMD */
|
|
tn40_write_reg(priv, 0x51F0, 0x0); /* GPIO_OE_ DATA */
|
|
tn40_write_reg(priv, TN40_REG_MDIO_CMD_STAT, 0x3ec8);
|
|
|
|
/* we use tx descriptors to load a firmware. */
|
|
ret = tn40_create_tx_ring(priv);
|
|
if (ret)
|
|
return ret;
|
|
ret = tn40_fw_load(priv);
|
|
tn40_destroy_tx_ring(priv);
|
|
return ret;
|
|
}
|
|
|
|
static struct net_device *tn40_netdev_alloc(struct pci_dev *pdev)
|
|
{
|
|
struct net_device *ndev;
|
|
|
|
ndev = devm_alloc_etherdev(&pdev->dev, sizeof(struct tn40_priv));
|
|
if (!ndev)
|
|
return NULL;
|
|
ndev->netdev_ops = &tn40_netdev_ops;
|
|
ndev->ethtool_ops = &tn40_ethtool_ops;
|
|
ndev->stat_ops = &tn40_stat_ops;
|
|
ndev->tx_queue_len = TN40_NDEV_TXQ_LEN;
|
|
ndev->mem_start = pci_resource_start(pdev, 0);
|
|
ndev->mem_end = pci_resource_end(pdev, 0);
|
|
ndev->min_mtu = ETH_ZLEN;
|
|
ndev->max_mtu = TN40_MAX_MTU;
|
|
|
|
ndev->features = NETIF_F_IP_CSUM |
|
|
NETIF_F_SG |
|
|
NETIF_F_FRAGLIST |
|
|
NETIF_F_TSO | NETIF_F_GRO |
|
|
NETIF_F_RXCSUM |
|
|
NETIF_F_RXHASH |
|
|
NETIF_F_HW_VLAN_CTAG_TX |
|
|
NETIF_F_HW_VLAN_CTAG_RX |
|
|
NETIF_F_HW_VLAN_CTAG_FILTER;
|
|
ndev->vlan_features = NETIF_F_IP_CSUM |
|
|
NETIF_F_SG |
|
|
NETIF_F_TSO | NETIF_F_GRO | NETIF_F_RXHASH;
|
|
|
|
if (dma_get_mask(&pdev->dev) == DMA_BIT_MASK(64)) {
|
|
ndev->features |= NETIF_F_HIGHDMA;
|
|
ndev->vlan_features |= NETIF_F_HIGHDMA;
|
|
}
|
|
ndev->hw_features |= ndev->features;
|
|
|
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
|
netif_stop_queue(ndev);
|
|
return ndev;
|
|
}
|
|
|
|
static int tn40_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *ndev;
|
|
struct tn40_priv *priv;
|
|
unsigned int nvec = 1;
|
|
void __iomem *regs;
|
|
int ret;
|
|
|
|
ret = pci_enable_device(pdev);
|
|
if (ret)
|
|
return ret;
|
|
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to set DMA mask.\n");
|
|
goto err_disable_device;
|
|
}
|
|
|
|
ret = pci_request_regions(pdev, TN40_DRV_NAME);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to request PCI regions.\n");
|
|
goto err_disable_device;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
regs = pci_iomap(pdev, 0, TN40_REGS_SIZE);
|
|
if (!regs) {
|
|
ret = -EIO;
|
|
dev_err(&pdev->dev, "failed to map PCI bar.\n");
|
|
goto err_free_regions;
|
|
}
|
|
|
|
ndev = tn40_netdev_alloc(pdev);
|
|
if (!ndev) {
|
|
ret = -ENOMEM;
|
|
dev_err(&pdev->dev, "failed to allocate netdev.\n");
|
|
goto err_iounmap;
|
|
}
|
|
|
|
priv = netdev_priv(ndev);
|
|
pci_set_drvdata(pdev, priv);
|
|
netif_napi_add(ndev, &priv->napi, tn40_poll);
|
|
|
|
priv->regs = regs;
|
|
priv->pdev = pdev;
|
|
priv->ndev = ndev;
|
|
/* Initialize fifo sizes. */
|
|
priv->txd_size = 3;
|
|
priv->txf_size = 3;
|
|
priv->rxd_size = 3;
|
|
priv->rxf_size = 3;
|
|
/* Initialize the initial coalescing registers. */
|
|
priv->rdintcm = TN40_INT_REG_VAL(0x20, 1, 4, 12);
|
|
priv->tdintcm = TN40_INT_REG_VAL(0x20, 1, 0, 12);
|
|
|
|
ret = tn40_hw_reset(priv);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to reset HW.\n");
|
|
goto err_unset_drvdata;
|
|
}
|
|
|
|
ret = pci_alloc_irq_vectors(pdev, 1, nvec, PCI_IRQ_MSI);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to allocate irq.\n");
|
|
goto err_unset_drvdata;
|
|
}
|
|
|
|
ret = tn40_mdiobus_init(priv);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to initialize mdio bus.\n");
|
|
goto err_free_irq;
|
|
}
|
|
|
|
priv->stats_flag =
|
|
((tn40_read_reg(priv, TN40_FPGA_VER) & 0xFFF) != 308);
|
|
u64_stats_init(&priv->syncp);
|
|
|
|
priv->isr_mask = TN40_IR_RX_FREE_0 | TN40_IR_LNKCHG0 | TN40_IR_PSE |
|
|
TN40_IR_TMR0 | TN40_IR_RX_DESC_0 | TN40_IR_TX_FREE_0 |
|
|
TN40_IR_TMR1;
|
|
|
|
tn40_mac_init(priv);
|
|
ret = tn40_phy_register(priv);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to set up PHY.\n");
|
|
goto err_free_irq;
|
|
}
|
|
|
|
ret = tn40_priv_init(priv);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to initialize tn40_priv.\n");
|
|
goto err_unregister_phydev;
|
|
}
|
|
|
|
ret = register_netdev(ndev);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to register netdev.\n");
|
|
goto err_unregister_phydev;
|
|
}
|
|
return 0;
|
|
err_unregister_phydev:
|
|
tn40_phy_unregister(priv);
|
|
err_free_irq:
|
|
pci_free_irq_vectors(pdev);
|
|
err_unset_drvdata:
|
|
pci_set_drvdata(pdev, NULL);
|
|
err_iounmap:
|
|
iounmap(regs);
|
|
err_free_regions:
|
|
pci_release_regions(pdev);
|
|
err_disable_device:
|
|
pci_disable_device(pdev);
|
|
return ret;
|
|
}
|
|
|
|
static void tn40_remove(struct pci_dev *pdev)
|
|
{
|
|
struct tn40_priv *priv = pci_get_drvdata(pdev);
|
|
struct net_device *ndev = priv->ndev;
|
|
|
|
unregister_netdev(ndev);
|
|
|
|
tn40_phy_unregister(priv);
|
|
pci_free_irq_vectors(priv->pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
iounmap(priv->regs);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
}
|
|
|
|
static const struct pci_device_id tn40_id_table[] = {
|
|
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
|
|
PCI_VENDOR_ID_TEHUTI, 0x3015) },
|
|
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
|
|
PCI_VENDOR_ID_DLINK, 0x4d00) },
|
|
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
|
|
PCI_VENDOR_ID_ASUSTEK, 0x8709) },
|
|
{ PCI_DEVICE_SUB(PCI_VENDOR_ID_TEHUTI, 0x4022,
|
|
PCI_VENDOR_ID_EDIMAX, 0x8103) },
|
|
{ }
|
|
};
|
|
|
|
static struct pci_driver tn40_driver = {
|
|
.name = TN40_DRV_NAME,
|
|
.id_table = tn40_id_table,
|
|
.probe = tn40_probe,
|
|
.remove = tn40_remove,
|
|
};
|
|
|
|
module_pci_driver(tn40_driver);
|
|
|
|
MODULE_DEVICE_TABLE(pci, tn40_id_table);
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_FIRMWARE(TN40_FIRMWARE_NAME);
|
|
MODULE_DESCRIPTION("Tehuti Network TN40xx Driver");
|