JustOS/linux-6.13/drivers/net/dsa/microchip/lan937x_main.c
justuser 02e73b8cd9 up
2025-01-24 17:00:19 +03:00

671 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Microchip LAN937X switch driver main logic
* Copyright (C) 2019-2024 Microchip Technology Inc.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/iopoll.h>
#include <linux/phy.h>
#include <linux/of_net.h>
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/math.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include "lan937x_reg.h"
#include "ksz_common.h"
#include "ksz9477.h"
#include "lan937x.h"
/* marker for ports without built-in PHY */
#define LAN937X_NO_PHY U8_MAX
/*
* lan9370_phy_addr - Mapping of LAN9370 switch ports to PHY addresses.
*
* Each entry corresponds to a specific port on the LAN9370 switch,
* where ports 1-4 are connected to integrated 100BASE-T1 PHYs, and
* Port 5 is connected to an RGMII interface without a PHY. The values
* are based on the documentation (DS00003108E, section 3.3).
*/
static const u8 lan9370_phy_addr[] = {
[0] = 2, /* Port 1, T1 AFE0 */
[1] = 3, /* Port 2, T1 AFE1 */
[2] = 5, /* Port 3, T1 AFE3 */
[3] = 6, /* Port 4, T1 AFE4 */
[4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */
};
/*
* lan9371_phy_addr - Mapping of LAN9371 switch ports to PHY addresses.
*
* The values are based on the documentation (DS00003109E, section 3.3).
*/
static const u8 lan9371_phy_addr[] = {
[0] = 2, /* Port 1, T1 AFE0 */
[1] = 3, /* Port 2, T1 AFE1 */
[2] = 5, /* Port 3, T1 AFE3 */
[3] = 8, /* Port 4, TX PHY */
[4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */
[5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */
};
/*
* lan9372_phy_addr - Mapping of LAN9372 switch ports to PHY addresses.
*
* The values are based on the documentation (DS00003110F, section 3.3).
*/
static const u8 lan9372_phy_addr[] = {
[0] = 2, /* Port 1, T1 AFE0 */
[1] = 3, /* Port 2, T1 AFE1 */
[2] = 5, /* Port 3, T1 AFE3 */
[3] = 8, /* Port 4, TX PHY */
[4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */
[5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */
[6] = 6, /* Port 7, T1 AFE4 */
[7] = 4, /* Port 8, T1 AFE2 */
};
/*
* lan9373_phy_addr - Mapping of LAN9373 switch ports to PHY addresses.
*
* The values are based on the documentation (DS00003110F, section 3.3).
*/
static const u8 lan9373_phy_addr[] = {
[0] = 2, /* Port 1, T1 AFE0 */
[1] = 3, /* Port 2, T1 AFE1 */
[2] = 5, /* Port 3, T1 AFE3 */
[3] = LAN937X_NO_PHY, /* Port 4, SGMII */
[4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */
[5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */
[6] = 6, /* Port 7, T1 AFE4 */
[7] = 4, /* Port 8, T1 AFE2 */
};
/*
* lan9374_phy_addr - Mapping of LAN9374 switch ports to PHY addresses.
*
* The values are based on the documentation (DS00003110F, section 3.3).
*/
static const u8 lan9374_phy_addr[] = {
[0] = 2, /* Port 1, T1 AFE0 */
[1] = 3, /* Port 2, T1 AFE1 */
[2] = 5, /* Port 3, T1 AFE3 */
[3] = 7, /* Port 4, T1 AFE5 */
[4] = LAN937X_NO_PHY, /* Port 5, RGMII 2 */
[5] = LAN937X_NO_PHY, /* Port 6, RGMII 1 */
[6] = 6, /* Port 7, T1 AFE4 */
[7] = 4, /* Port 8, T1 AFE2 */
};
static int lan937x_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
return regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
}
static int lan937x_port_cfg(struct ksz_device *dev, int port, int offset,
u8 bits, bool set)
{
return regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
/**
* lan937x_create_phy_addr_map - Create port-to-PHY address map for MDIO bus.
* @dev: Pointer to device structure.
* @side_mdio: Boolean indicating if the PHYs are accessed over a side MDIO bus.
*
* This function sets up the PHY address mapping for the LAN937x switches,
* which support two access modes for internal PHYs:
* 1. **SPI Access**: A straightforward one-to-one port-to-PHY address
* mapping is applied.
* 2. **MDIO Access**: The PHY address mapping varies based on chip variant
* and strap configuration. An offset is calculated based on strap settings
* to ensure correct PHY addresses are assigned. The offset calculation logic
* is based on Microchip's Article Number 000015828, available at:
* https://microchip.my.site.com/s/article/LAN9374-Virtual-PHY-PHY-Address-Mapping
*
* The function first checks if side MDIO access is disabled, in which case a
* simple direct mapping (port number = PHY address) is applied. If side MDIO
* access is enabled, it reads the strap configuration to determine the correct
* offset for PHY addresses.
*
* The appropriate mapping table is selected based on the chip ID, and the
* `phy_addr_map` is populated with the correct addresses for each port. Any
* port with no PHY is assigned a `LAN937X_NO_PHY` marker.
*
* Return: 0 on success, error code on failure.
*/
int lan937x_create_phy_addr_map(struct ksz_device *dev, bool side_mdio)
{
static const u8 *phy_addr_map;
u32 strap_val;
u8 offset = 0;
size_t size;
int ret, i;
if (!side_mdio) {
/* simple direct mapping */
for (i = 0; i < dev->info->port_cnt; i++)
dev->phy_addr_map[i] = i;
return 0;
}
ret = ksz_read32(dev, REG_SW_CFG_STRAP_VAL, &strap_val);
if (ret < 0)
return ret;
if (!(strap_val & SW_CASCADE_ID_CFG) && !(strap_val & SW_VPHY_ADD_CFG))
offset = 0;
else if (!(strap_val & SW_CASCADE_ID_CFG) && (strap_val & SW_VPHY_ADD_CFG))
offset = 7;
else if ((strap_val & SW_CASCADE_ID_CFG) && !(strap_val & SW_VPHY_ADD_CFG))
offset = 15;
else
offset = 22;
switch (dev->info->chip_id) {
case LAN9370_CHIP_ID:
phy_addr_map = lan9370_phy_addr;
size = ARRAY_SIZE(lan9370_phy_addr);
break;
case LAN9371_CHIP_ID:
phy_addr_map = lan9371_phy_addr;
size = ARRAY_SIZE(lan9371_phy_addr);
break;
case LAN9372_CHIP_ID:
phy_addr_map = lan9372_phy_addr;
size = ARRAY_SIZE(lan9372_phy_addr);
break;
case LAN9373_CHIP_ID:
phy_addr_map = lan9373_phy_addr;
size = ARRAY_SIZE(lan9373_phy_addr);
break;
case LAN9374_CHIP_ID:
phy_addr_map = lan9374_phy_addr;
size = ARRAY_SIZE(lan9374_phy_addr);
break;
default:
return -EINVAL;
}
if (size < dev->info->port_cnt)
return -EINVAL;
for (i = 0; i < dev->info->port_cnt; i++) {
if (phy_addr_map[i] == LAN937X_NO_PHY)
dev->phy_addr_map[i] = phy_addr_map[i];
else
dev->phy_addr_map[i] = phy_addr_map[i] + offset;
}
return 0;
}
/**
* lan937x_mdio_bus_preinit - Pre-initialize MDIO bus for accessing PHYs.
* @dev: Pointer to device structure.
* @side_mdio: Boolean indicating if the PHYs are accessed over a side MDIO bus.
*
* This function configures the LAN937x switch for PHY access either through
* SPI or the side MDIO bus, unlocking the necessary registers for each access
* mode.
*
* Operation Modes:
* 1. **SPI Access**: Enables SPI indirect access to address clock domain
* crossing issues when SPI is used for PHY access.
* 2. **MDIO Access**: Grants access to internal PHYs over the side MDIO bus,
* required when using the MDIO bus for PHY management.
*
* Return: 0 on success, error code on failure.
*/
int lan937x_mdio_bus_preinit(struct ksz_device *dev, bool side_mdio)
{
u16 data16;
int ret;
/* Unlock access to the PHYs, needed for SPI and side MDIO access */
ret = lan937x_cfg(dev, REG_GLOBAL_CTRL_0, SW_PHY_REG_BLOCK, false);
if (ret < 0)
goto print_error;
if (side_mdio)
/* Allow access to internal PHYs over MDIO bus */
data16 = VPHY_MDIO_INTERNAL_ENABLE;
else
/* Enable SPI indirect access to address clock domain crossing
* issue
*/
data16 = VPHY_SPI_INDIRECT_ENABLE;
ret = ksz_rmw16(dev, REG_VPHY_SPECIAL_CTRL__2,
VPHY_SPI_INDIRECT_ENABLE | VPHY_MDIO_INTERNAL_ENABLE,
data16);
print_error:
if (ret < 0)
dev_err(dev->dev, "failed to preinit the MDIO bus\n");
return ret;
}
static int lan937x_vphy_ind_addr_wr(struct ksz_device *dev, int addr, int reg)
{
u16 addr_base = REG_PORT_T1_PHY_CTRL_BASE;
u16 temp;
if (is_lan937x_tx_phy(dev, addr))
addr_base = REG_PORT_TX_PHY_CTRL_BASE;
/* get register address based on the logical port */
temp = PORT_CTRL_ADDR(addr, (addr_base + (reg << 2)));
return ksz_write16(dev, REG_VPHY_IND_ADDR__2, temp);
}
static int lan937x_internal_phy_write(struct ksz_device *dev, int addr, int reg,
u16 val)
{
unsigned int value;
int ret;
/* Check for internal phy port */
if (!dev->info->internal_phy[addr])
return -EOPNOTSUPP;
ret = lan937x_vphy_ind_addr_wr(dev, addr, reg);
if (ret < 0)
return ret;
/* Write the data to be written to the VPHY reg */
ret = ksz_write16(dev, REG_VPHY_IND_DATA__2, val);
if (ret < 0)
return ret;
/* Write the Write En and Busy bit */
ret = ksz_write16(dev, REG_VPHY_IND_CTRL__2,
(VPHY_IND_WRITE | VPHY_IND_BUSY));
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(ksz_regmap_16(dev), REG_VPHY_IND_CTRL__2,
value, !(value & VPHY_IND_BUSY), 10,
1000);
if (ret < 0) {
dev_err(dev->dev, "Failed to write phy register\n");
return ret;
}
return 0;
}
static int lan937x_internal_phy_read(struct ksz_device *dev, int addr, int reg,
u16 *val)
{
unsigned int value;
int ret;
/* Check for internal phy port, return 0xffff for non-existent phy */
if (!dev->info->internal_phy[addr])
return 0xffff;
ret = lan937x_vphy_ind_addr_wr(dev, addr, reg);
if (ret < 0)
return ret;
/* Write Read and Busy bit to start the transaction */
ret = ksz_write16(dev, REG_VPHY_IND_CTRL__2, VPHY_IND_BUSY);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(ksz_regmap_16(dev), REG_VPHY_IND_CTRL__2,
value, !(value & VPHY_IND_BUSY), 10,
1000);
if (ret < 0) {
dev_err(dev->dev, "Failed to read phy register\n");
return ret;
}
/* Read the VPHY register which has the PHY data */
return ksz_read16(dev, REG_VPHY_IND_DATA__2, val);
}
int lan937x_r_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 *data)
{
return lan937x_internal_phy_read(dev, addr, reg, data);
}
int lan937x_w_phy(struct ksz_device *dev, u16 addr, u16 reg, u16 val)
{
return lan937x_internal_phy_write(dev, addr, reg, val);
}
int lan937x_reset_switch(struct ksz_device *dev)
{
u32 data32;
int ret;
/* reset switch */
ret = lan937x_cfg(dev, REG_SW_OPERATION, SW_RESET, true);
if (ret < 0)
return ret;
/* Enable Auto Aging */
ret = lan937x_cfg(dev, REG_SW_LUE_CTRL_1, SW_LINK_AUTO_AGING, true);
if (ret < 0)
return ret;
/* disable interrupts */
ret = ksz_write32(dev, REG_SW_INT_MASK__4, SWITCH_INT_MASK);
if (ret < 0)
return ret;
ret = ksz_write32(dev, REG_SW_INT_STATUS__4, POR_READY_INT);
if (ret < 0)
return ret;
ret = ksz_write32(dev, REG_SW_PORT_INT_MASK__4, 0xFF);
if (ret < 0)
return ret;
return ksz_read32(dev, REG_SW_PORT_INT_STATUS__4, &data32);
}
void lan937x_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
const u32 *masks = dev->info->masks;
const u16 *regs = dev->info->regs;
struct dsa_switch *ds = dev->ds;
u8 member;
/* enable tag tail for host port */
if (cpu_port)
lan937x_port_cfg(dev, port, REG_PORT_CTRL_0,
PORT_TAIL_TAG_ENABLE, true);
/* Enable the Port Queue split */
ksz9477_port_queue_split(dev, port);
/* set back pressure for half duplex */
lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_1, PORT_BACK_PRESSURE,
true);
/* enable 802.1p priority */
lan937x_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_PRIO_ENABLE, true);
if (!dev->info->internal_phy[port])
lan937x_port_cfg(dev, port, regs[P_XMII_CTRL_0],
masks[P_MII_TX_FLOW_CTRL] |
masks[P_MII_RX_FLOW_CTRL],
true);
if (cpu_port)
member = dsa_user_ports(ds);
else
member = BIT(dsa_upstream_port(ds, port));
dev->dev_ops->cfg_port_member(dev, port, member);
}
void lan937x_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct dsa_port *dp;
dsa_switch_for_each_cpu_port(dp, ds) {
if (dev->info->cpu_ports & (1 << dp->index)) {
dev->cpu_port = dp->index;
/* enable cpu port */
lan937x_port_setup(dev, dp->index, true);
}
}
dsa_switch_for_each_user_port(dp, ds) {
ksz_port_stp_state_set(ds, dp->index, BR_STATE_DISABLED);
}
}
int lan937x_change_mtu(struct ksz_device *dev, int port, int new_mtu)
{
struct dsa_switch *ds = dev->ds;
int ret;
new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN;
if (dsa_is_cpu_port(ds, port))
new_mtu += LAN937X_TAG_LEN;
if (new_mtu >= FR_MIN_SIZE)
ret = lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_0,
PORT_JUMBO_PACKET, true);
else
ret = lan937x_port_cfg(dev, port, REG_PORT_MAC_CTRL_0,
PORT_JUMBO_PACKET, false);
if (ret < 0) {
dev_err(ds->dev, "failed to enable jumbo\n");
return ret;
}
/* Write the frame size in PORT_MAX_FR_SIZE register */
ret = ksz_pwrite16(dev, port, PORT_MAX_FR_SIZE, new_mtu);
if (ret) {
dev_err(ds->dev, "failed to update mtu for port %d\n", port);
return ret;
}
return 0;
}
int lan937x_set_ageing_time(struct ksz_device *dev, unsigned int msecs)
{
u8 data, mult, value8;
bool in_msec = false;
u32 max_val, value;
u32 secs = msecs;
int ret;
#define MAX_TIMER_VAL ((1 << 20) - 1)
/* The aging timer comprises a 3-bit multiplier and a 20-bit second
* value. Either of them cannot be zero. The maximum timer is then
* 7 * 1048575 = 7340025 seconds. As this value is too large for
* practical use it can be interpreted as microseconds, making the
* maximum timer 7340 seconds with finer control. This allows for
* maximum 122 minutes compared to 29 minutes in KSZ9477 switch.
*/
if (msecs % 1000)
in_msec = true;
else
secs /= 1000;
if (!secs)
secs = 1;
/* Return error if too large. */
else if (secs > 7 * MAX_TIMER_VAL)
return -EINVAL;
/* Configure how to interpret the number value. */
ret = ksz_rmw8(dev, REG_SW_LUE_CTRL_2, SW_AGE_CNT_IN_MICROSEC,
in_msec ? SW_AGE_CNT_IN_MICROSEC : 0);
if (ret < 0)
return ret;
ret = ksz_read8(dev, REG_SW_LUE_CTRL_0, &value8);
if (ret < 0)
return ret;
/* Check whether there is need to update the multiplier. */
mult = FIELD_GET(SW_AGE_CNT_M, value8);
max_val = MAX_TIMER_VAL;
if (mult > 0) {
/* Try to use the same multiplier already in the register as
* the hardware default uses multiplier 4 and 75 seconds for
* 300 seconds.
*/
max_val = DIV_ROUND_UP(secs, mult);
if (max_val > MAX_TIMER_VAL || max_val * mult != secs)
max_val = MAX_TIMER_VAL;
}
data = DIV_ROUND_UP(secs, max_val);
if (mult != data) {
value8 &= ~SW_AGE_CNT_M;
value8 |= FIELD_PREP(SW_AGE_CNT_M, data);
ret = ksz_write8(dev, REG_SW_LUE_CTRL_0, value8);
if (ret < 0)
return ret;
}
secs = DIV_ROUND_UP(secs, data);
value = FIELD_GET(SW_AGE_PERIOD_7_0_M, secs);
ret = ksz_write8(dev, REG_SW_AGE_PERIOD__1, value);
if (ret < 0)
return ret;
value = FIELD_GET(SW_AGE_PERIOD_19_8_M, secs);
return ksz_write16(dev, REG_SW_AGE_PERIOD__2, value);
}
static void lan937x_set_tune_adj(struct ksz_device *dev, int port,
u16 reg, u8 val)
{
u16 data16;
ksz_pread16(dev, port, reg, &data16);
/* Update tune Adjust */
data16 |= FIELD_PREP(PORT_TUNE_ADJ, val);
ksz_pwrite16(dev, port, reg, data16);
/* write DLL reset to take effect */
data16 |= PORT_DLL_RESET;
ksz_pwrite16(dev, port, reg, data16);
}
static void lan937x_set_rgmii_tx_delay(struct ksz_device *dev, int port)
{
u8 val;
/* Apply different codes based on the ports as per characterization
* results
*/
val = (port == LAN937X_RGMII_1_PORT) ? RGMII_1_TX_DELAY_2NS :
RGMII_2_TX_DELAY_2NS;
lan937x_set_tune_adj(dev, port, REG_PORT_XMII_CTRL_5, val);
}
static void lan937x_set_rgmii_rx_delay(struct ksz_device *dev, int port)
{
u8 val;
val = (port == LAN937X_RGMII_1_PORT) ? RGMII_1_RX_DELAY_2NS :
RGMII_2_RX_DELAY_2NS;
lan937x_set_tune_adj(dev, port, REG_PORT_XMII_CTRL_4, val);
}
void lan937x_phylink_get_caps(struct ksz_device *dev, int port,
struct phylink_config *config)
{
config->mac_capabilities = MAC_100FD;
if (dev->info->supports_rgmii[port]) {
/* MII/RMII/RGMII ports */
config->mac_capabilities |= MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_100HD | MAC_10 | MAC_1000FD;
} else if (is_lan937x_tx_phy(dev, port)) {
config->mac_capabilities |= MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
MAC_100HD | MAC_10;
}
}
void lan937x_setup_rgmii_delay(struct ksz_device *dev, int port)
{
struct ksz_port *p = &dev->ports[port];
if (p->rgmii_tx_val) {
lan937x_set_rgmii_tx_delay(dev, port);
dev_info(dev->dev, "Applied rgmii tx delay for the port %d\n",
port);
}
if (p->rgmii_rx_val) {
lan937x_set_rgmii_rx_delay(dev, port);
dev_info(dev->dev, "Applied rgmii rx delay for the port %d\n",
port);
}
}
int lan937x_tc_cbs_set_cinc(struct ksz_device *dev, int port, u32 val)
{
return ksz_pwrite32(dev, port, REG_PORT_MTI_CREDIT_INCREMENT, val);
}
int lan937x_switch_init(struct ksz_device *dev)
{
dev->port_mask = (1 << dev->info->port_cnt) - 1;
return 0;
}
int lan937x_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret;
/* The VLAN aware is a global setting. Mixed vlan
* filterings are not supported.
*/
ds->vlan_filtering_is_global = true;
/* Enable aggressive back off for half duplex & UNH mode */
ret = lan937x_cfg(dev, REG_SW_MAC_CTRL_0, (SW_PAUSE_UNH_MODE |
SW_NEW_BACKOFF |
SW_AGGR_BACKOFF), true);
if (ret < 0)
return ret;
/* If NO_EXC_COLLISION_DROP bit is set, the switch will not drop
* packets when 16 or more collisions occur
*/
ret = lan937x_cfg(dev, REG_SW_MAC_CTRL_1, NO_EXC_COLLISION_DROP, true);
if (ret < 0)
return ret;
/* enable global MIB counter freeze function */
ret = lan937x_cfg(dev, REG_SW_MAC_CTRL_6, SW_MIB_COUNTER_FREEZE, true);
if (ret < 0)
return ret;
/* disable CLK125 & CLK25, 1: disable, 0: enable */
ret = lan937x_cfg(dev, REG_SW_GLOBAL_OUTPUT_CTRL__1,
(SW_CLK125_ENB | SW_CLK25_ENB), true);
if (ret < 0)
return ret;
/* Disable global VPHY support. Related to CPU interface only? */
return ksz_rmw32(dev, REG_SW_CFG_STRAP_OVR, SW_VPHY_DISABLE,
SW_VPHY_DISABLE);
}
void lan937x_teardown(struct dsa_switch *ds)
{
}
void lan937x_switch_exit(struct ksz_device *dev)
{
lan937x_reset_switch(dev);
}
MODULE_AUTHOR("Arun Ramadoss <arun.ramadoss@microchip.com>");
MODULE_DESCRIPTION("Microchip LAN937x Series Switch DSA Driver");
MODULE_LICENSE("GPL");