JustOS/linux-6.13/drivers/iio/adc/ad7606.c
justuser 02e73b8cd9 up
2025-01-24 17:00:19 +03:00

1370 lines
35 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* AD7606 SPI ADC driver
*
* Copyright 2011 Analog Devices Inc.
*/
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/property.h>
#include <linux/pwm.h>
#include <linux/regulator/consumer.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/sysfs.h>
#include <linux/units.h>
#include <linux/util_macros.h>
#include <linux/iio/backend.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include "ad7606.h"
/*
* Scales are computed as 5000/32768 and 10000/32768 respectively,
* so that when applied to the raw values they provide mV values.
* The scale arrays are kept as IIO_VAL_INT_PLUS_MICRO, so index
* X is the integer part and X + 1 is the fractional part.
*/
static const unsigned int ad7606_16bit_hw_scale_avail[2][2] = {
{ 0, 152588 }, { 0, 305176 }
};
static const unsigned int ad7606_18bit_hw_scale_avail[2][2] = {
{ 0, 38147 }, { 0, 76294 }
};
static const unsigned int ad7606c_16bit_single_ended_unipolar_scale_avail[3][2] = {
{ 0, 76294 }, { 0, 152588 }, { 0, 190735 }
};
static const unsigned int ad7606c_16bit_single_ended_bipolar_scale_avail[5][2] = {
{ 0, 76294 }, { 0, 152588 }, { 0, 190735 }, { 0, 305176 }, { 0, 381470 }
};
static const unsigned int ad7606c_16bit_differential_bipolar_scale_avail[4][2] = {
{ 0, 152588 }, { 0, 305176 }, { 0, 381470 }, { 0, 610352 }
};
static const unsigned int ad7606c_18bit_single_ended_unipolar_scale_avail[3][2] = {
{ 0, 19073 }, { 0, 38147 }, { 0, 47684 }
};
static const unsigned int ad7606c_18bit_single_ended_bipolar_scale_avail[5][2] = {
{ 0, 19073 }, { 0, 38147 }, { 0, 47684 }, { 0, 76294 }, { 0, 95367 }
};
static const unsigned int ad7606c_18bit_differential_bipolar_scale_avail[4][2] = {
{ 0, 38147 }, { 0, 76294 }, { 0, 95367 }, { 0, 152588 }
};
static const unsigned int ad7606_16bit_sw_scale_avail[3][2] = {
{ 0, 76293 }, { 0, 152588 }, { 0, 305176 }
};
static const unsigned int ad7607_hw_scale_avail[2][2] = {
{ 0, 610352 }, { 1, 220703 }
};
static const unsigned int ad7609_hw_scale_avail[2][2] = {
{ 0, 152588 }, { 0, 305176 }
};
static const unsigned int ad7606_oversampling_avail[7] = {
1, 2, 4, 8, 16, 32, 64,
};
static const unsigned int ad7616_oversampling_avail[8] = {
1, 2, 4, 8, 16, 32, 64, 128,
};
static const struct iio_chan_spec ad7605_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(4),
AD7605_CHANNEL(0),
AD7605_CHANNEL(1),
AD7605_CHANNEL(2),
AD7605_CHANNEL(3),
};
static const struct iio_chan_spec ad7606_channels_16bit[] = {
IIO_CHAN_SOFT_TIMESTAMP(8),
AD7606_CHANNEL(0, 16),
AD7606_CHANNEL(1, 16),
AD7606_CHANNEL(2, 16),
AD7606_CHANNEL(3, 16),
AD7606_CHANNEL(4, 16),
AD7606_CHANNEL(5, 16),
AD7606_CHANNEL(6, 16),
AD7606_CHANNEL(7, 16),
};
static const struct iio_chan_spec ad7606_channels_18bit[] = {
IIO_CHAN_SOFT_TIMESTAMP(8),
AD7606_CHANNEL(0, 18),
AD7606_CHANNEL(1, 18),
AD7606_CHANNEL(2, 18),
AD7606_CHANNEL(3, 18),
AD7606_CHANNEL(4, 18),
AD7606_CHANNEL(5, 18),
AD7606_CHANNEL(6, 18),
AD7606_CHANNEL(7, 18),
};
static const struct iio_chan_spec ad7607_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(8),
AD7606_CHANNEL(0, 14),
AD7606_CHANNEL(1, 14),
AD7606_CHANNEL(2, 14),
AD7606_CHANNEL(3, 14),
AD7606_CHANNEL(4, 14),
AD7606_CHANNEL(5, 14),
AD7606_CHANNEL(6, 14),
AD7606_CHANNEL(7, 14),
};
static const struct iio_chan_spec ad7608_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(8),
AD7606_CHANNEL(0, 18),
AD7606_CHANNEL(1, 18),
AD7606_CHANNEL(2, 18),
AD7606_CHANNEL(3, 18),
AD7606_CHANNEL(4, 18),
AD7606_CHANNEL(5, 18),
AD7606_CHANNEL(6, 18),
AD7606_CHANNEL(7, 18),
};
/*
* The current assumption that this driver makes for AD7616, is that it's
* working in Hardware Mode with Serial, Burst and Sequencer modes activated.
* To activate them, following pins must be pulled high:
* -SER/PAR
* -SEQEN
* And following pins must be pulled low:
* -WR/BURST
* -DB4/SER1W
*/
static const struct iio_chan_spec ad7616_channels[] = {
IIO_CHAN_SOFT_TIMESTAMP(16),
AD7606_CHANNEL(0, 16),
AD7606_CHANNEL(1, 16),
AD7606_CHANNEL(2, 16),
AD7606_CHANNEL(3, 16),
AD7606_CHANNEL(4, 16),
AD7606_CHANNEL(5, 16),
AD7606_CHANNEL(6, 16),
AD7606_CHANNEL(7, 16),
AD7606_CHANNEL(8, 16),
AD7606_CHANNEL(9, 16),
AD7606_CHANNEL(10, 16),
AD7606_CHANNEL(11, 16),
AD7606_CHANNEL(12, 16),
AD7606_CHANNEL(13, 16),
AD7606_CHANNEL(14, 16),
AD7606_CHANNEL(15, 16),
};
static int ad7606c_18bit_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch);
static int ad7606c_16bit_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch);
static int ad7606_16bit_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch);
static int ad7607_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch);
static int ad7608_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch);
static int ad7609_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch);
const struct ad7606_chip_info ad7605_4_info = {
.channels = ad7605_channels,
.name = "ad7605-4",
.num_adc_channels = 4,
.num_channels = 5,
.scale_setup_cb = ad7606_16bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7605_4_info, "IIO_AD7606");
const struct ad7606_chip_info ad7606_8_info = {
.channels = ad7606_channels_16bit,
.name = "ad7606-8",
.num_adc_channels = 8,
.num_channels = 9,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7606_16bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7606_8_info, "IIO_AD7606");
const struct ad7606_chip_info ad7606_6_info = {
.channels = ad7606_channels_16bit,
.name = "ad7606-6",
.num_adc_channels = 6,
.num_channels = 7,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7606_16bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7606_6_info, "IIO_AD7606");
const struct ad7606_chip_info ad7606_4_info = {
.channels = ad7606_channels_16bit,
.name = "ad7606-4",
.num_adc_channels = 4,
.num_channels = 5,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7606_16bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7606_4_info, "IIO_AD7606");
const struct ad7606_chip_info ad7606b_info = {
.channels = ad7606_channels_16bit,
.max_samplerate = 800 * KILO,
.name = "ad7606b",
.num_adc_channels = 8,
.num_channels = 9,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7606_16bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7606b_info, "IIO_AD7606");
const struct ad7606_chip_info ad7606c_16_info = {
.channels = ad7606_channels_16bit,
.name = "ad7606c16",
.num_adc_channels = 8,
.num_channels = 9,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7606c_16bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7606c_16_info, "IIO_AD7606");
const struct ad7606_chip_info ad7607_info = {
.channels = ad7607_channels,
.name = "ad7607",
.num_adc_channels = 8,
.num_channels = 9,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7607_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7607_info, "IIO_AD7606");
const struct ad7606_chip_info ad7608_info = {
.channels = ad7608_channels,
.name = "ad7608",
.num_adc_channels = 8,
.num_channels = 9,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7608_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7608_info, "IIO_AD7606");
const struct ad7606_chip_info ad7609_info = {
.channels = ad7608_channels,
.name = "ad7609",
.num_adc_channels = 8,
.num_channels = 9,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7609_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7609_info, "IIO_AD7606");
const struct ad7606_chip_info ad7606c_18_info = {
.channels = ad7606_channels_18bit,
.name = "ad7606c18",
.num_adc_channels = 8,
.num_channels = 9,
.oversampling_avail = ad7606_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7606_oversampling_avail),
.scale_setup_cb = ad7606c_18bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7606c_18_info, "IIO_AD7606");
const struct ad7606_chip_info ad7616_info = {
.channels = ad7616_channels,
.init_delay_ms = 15,
.name = "ad7616",
.num_adc_channels = 16,
.num_channels = 17,
.oversampling_avail = ad7616_oversampling_avail,
.oversampling_num = ARRAY_SIZE(ad7616_oversampling_avail),
.os_req_reset = true,
.scale_setup_cb = ad7606_16bit_chan_scale_setup,
};
EXPORT_SYMBOL_NS_GPL(ad7616_info, "IIO_AD7606");
int ad7606_reset(struct ad7606_state *st)
{
if (st->gpio_reset) {
gpiod_set_value(st->gpio_reset, 1);
ndelay(100); /* t_reset >= 100ns */
gpiod_set_value(st->gpio_reset, 0);
return 0;
}
return -ENODEV;
}
EXPORT_SYMBOL_NS_GPL(ad7606_reset, "IIO_AD7606");
static int ad7606_16bit_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch)
{
struct ad7606_chan_scale *cs = &st->chan_scales[ch];
if (!st->sw_mode_en) {
/* tied to logic low, analog input range is +/- 5V */
cs->range = 0;
cs->scale_avail = ad7606_16bit_hw_scale_avail;
cs->num_scales = ARRAY_SIZE(ad7606_16bit_hw_scale_avail);
return 0;
}
/* Scale of 0.076293 is only available in sw mode */
/* After reset, in software mode, ±10 V is set by default */
cs->range = 2;
cs->scale_avail = ad7606_16bit_sw_scale_avail;
cs->num_scales = ARRAY_SIZE(ad7606_16bit_sw_scale_avail);
return 0;
}
static int ad7606_get_chan_config(struct ad7606_state *st, int ch,
bool *bipolar, bool *differential)
{
unsigned int num_channels = st->chip_info->num_channels - 1;
struct device *dev = st->dev;
int ret;
*bipolar = false;
*differential = false;
device_for_each_child_node_scoped(dev, child) {
u32 pins[2];
int reg;
ret = fwnode_property_read_u32(child, "reg", &reg);
if (ret)
continue;
/* channel number (here) is from 1 to num_channels */
if (reg == 0 || reg > num_channels) {
dev_warn(dev,
"Invalid channel number (ignoring): %d\n", reg);
continue;
}
if (reg != (ch + 1))
continue;
*bipolar = fwnode_property_read_bool(child, "bipolar");
ret = fwnode_property_read_u32_array(child, "diff-channels",
pins, ARRAY_SIZE(pins));
/* Channel is differential, if pins are the same as 'reg' */
if (ret == 0 && (pins[0] != reg || pins[1] != reg)) {
dev_err(dev,
"Differential pins must be the same as 'reg'");
return -EINVAL;
}
*differential = (ret == 0);
if (*differential && !*bipolar) {
dev_err(dev,
"'bipolar' must be added for diff channel %d\n",
reg);
return -EINVAL;
}
return 0;
}
return 0;
}
static int ad7606c_18bit_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch)
{
struct ad7606_chan_scale *cs = &st->chan_scales[ch];
bool bipolar, differential;
int ret;
if (!st->sw_mode_en) {
cs->range = 0;
cs->scale_avail = ad7606_18bit_hw_scale_avail;
cs->num_scales = ARRAY_SIZE(ad7606_18bit_hw_scale_avail);
return 0;
}
ret = ad7606_get_chan_config(st, ch, &bipolar, &differential);
if (ret)
return ret;
if (differential) {
cs->scale_avail = ad7606c_18bit_differential_bipolar_scale_avail;
cs->num_scales =
ARRAY_SIZE(ad7606c_18bit_differential_bipolar_scale_avail);
/* Bipolar differential ranges start at 8 (b1000) */
cs->reg_offset = 8;
cs->range = 1;
chan->differential = 1;
chan->channel2 = chan->channel;
return 0;
}
chan->differential = 0;
if (bipolar) {
cs->scale_avail = ad7606c_18bit_single_ended_bipolar_scale_avail;
cs->num_scales =
ARRAY_SIZE(ad7606c_18bit_single_ended_bipolar_scale_avail);
/* Bipolar single-ended ranges start at 0 (b0000) */
cs->reg_offset = 0;
cs->range = 3;
chan->scan_type.sign = 's';
return 0;
}
cs->scale_avail = ad7606c_18bit_single_ended_unipolar_scale_avail;
cs->num_scales =
ARRAY_SIZE(ad7606c_18bit_single_ended_unipolar_scale_avail);
/* Unipolar single-ended ranges start at 5 (b0101) */
cs->reg_offset = 5;
cs->range = 1;
chan->scan_type.sign = 'u';
return 0;
}
static int ad7606c_16bit_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch)
{
struct ad7606_chan_scale *cs = &st->chan_scales[ch];
bool bipolar, differential;
int ret;
if (!st->sw_mode_en) {
cs->range = 0;
cs->scale_avail = ad7606_16bit_hw_scale_avail;
cs->num_scales = ARRAY_SIZE(ad7606_16bit_hw_scale_avail);
return 0;
}
ret = ad7606_get_chan_config(st, ch, &bipolar, &differential);
if (ret)
return ret;
if (differential) {
cs->scale_avail = ad7606c_16bit_differential_bipolar_scale_avail;
cs->num_scales =
ARRAY_SIZE(ad7606c_16bit_differential_bipolar_scale_avail);
/* Bipolar differential ranges start at 8 (b1000) */
cs->reg_offset = 8;
cs->range = 1;
chan->differential = 1;
chan->channel2 = chan->channel;
chan->scan_type.sign = 's';
return 0;
}
chan->differential = 0;
if (bipolar) {
cs->scale_avail = ad7606c_16bit_single_ended_bipolar_scale_avail;
cs->num_scales =
ARRAY_SIZE(ad7606c_16bit_single_ended_bipolar_scale_avail);
/* Bipolar single-ended ranges start at 0 (b0000) */
cs->reg_offset = 0;
cs->range = 3;
chan->scan_type.sign = 's';
return 0;
}
cs->scale_avail = ad7606c_16bit_single_ended_unipolar_scale_avail;
cs->num_scales =
ARRAY_SIZE(ad7606c_16bit_single_ended_unipolar_scale_avail);
/* Unipolar single-ended ranges start at 5 (b0101) */
cs->reg_offset = 5;
cs->range = 1;
chan->scan_type.sign = 'u';
return 0;
}
static int ad7607_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch)
{
struct ad7606_chan_scale *cs = &st->chan_scales[ch];
cs->range = 0;
cs->scale_avail = ad7607_hw_scale_avail;
cs->num_scales = ARRAY_SIZE(ad7607_hw_scale_avail);
return 0;
}
static int ad7608_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch)
{
struct ad7606_chan_scale *cs = &st->chan_scales[ch];
cs->range = 0;
cs->scale_avail = ad7606_18bit_hw_scale_avail;
cs->num_scales = ARRAY_SIZE(ad7606_18bit_hw_scale_avail);
return 0;
}
static int ad7609_chan_scale_setup(struct ad7606_state *st,
struct iio_chan_spec *chan, int ch)
{
struct ad7606_chan_scale *cs = &st->chan_scales[ch];
cs->range = 0;
cs->scale_avail = ad7609_hw_scale_avail;
cs->num_scales = ARRAY_SIZE(ad7609_hw_scale_avail);
return 0;
}
static int ad7606_reg_access(struct iio_dev *indio_dev,
unsigned int reg,
unsigned int writeval,
unsigned int *readval)
{
struct ad7606_state *st = iio_priv(indio_dev);
int ret;
guard(mutex)(&st->lock);
if (readval) {
ret = st->bops->reg_read(st, reg);
if (ret < 0)
return ret;
*readval = ret;
return 0;
} else {
return st->bops->reg_write(st, reg, writeval);
}
}
static int ad7606_pwm_set_high(struct ad7606_state *st)
{
struct pwm_state cnvst_pwm_state;
int ret;
pwm_get_state(st->cnvst_pwm, &cnvst_pwm_state);
cnvst_pwm_state.enabled = true;
cnvst_pwm_state.duty_cycle = cnvst_pwm_state.period;
ret = pwm_apply_might_sleep(st->cnvst_pwm, &cnvst_pwm_state);
return ret;
}
static int ad7606_pwm_set_low(struct ad7606_state *st)
{
struct pwm_state cnvst_pwm_state;
int ret;
pwm_get_state(st->cnvst_pwm, &cnvst_pwm_state);
cnvst_pwm_state.enabled = true;
cnvst_pwm_state.duty_cycle = 0;
ret = pwm_apply_might_sleep(st->cnvst_pwm, &cnvst_pwm_state);
return ret;
}
static int ad7606_pwm_set_swing(struct ad7606_state *st)
{
struct pwm_state cnvst_pwm_state;
pwm_get_state(st->cnvst_pwm, &cnvst_pwm_state);
cnvst_pwm_state.enabled = true;
cnvst_pwm_state.duty_cycle = cnvst_pwm_state.period / 2;
return pwm_apply_might_sleep(st->cnvst_pwm, &cnvst_pwm_state);
}
static bool ad7606_pwm_is_swinging(struct ad7606_state *st)
{
struct pwm_state cnvst_pwm_state;
pwm_get_state(st->cnvst_pwm, &cnvst_pwm_state);
return cnvst_pwm_state.duty_cycle != cnvst_pwm_state.period &&
cnvst_pwm_state.duty_cycle != 0;
}
static int ad7606_set_sampling_freq(struct ad7606_state *st, unsigned long freq)
{
struct pwm_state cnvst_pwm_state;
bool is_swinging = ad7606_pwm_is_swinging(st);
bool is_high;
if (freq == 0)
return -EINVAL;
/* Retrieve the previous state. */
pwm_get_state(st->cnvst_pwm, &cnvst_pwm_state);
is_high = cnvst_pwm_state.duty_cycle == cnvst_pwm_state.period;
cnvst_pwm_state.period = DIV_ROUND_UP_ULL(NSEC_PER_SEC, freq);
cnvst_pwm_state.polarity = PWM_POLARITY_NORMAL;
if (is_high)
cnvst_pwm_state.duty_cycle = cnvst_pwm_state.period;
else if (is_swinging)
cnvst_pwm_state.duty_cycle = cnvst_pwm_state.period / 2;
else
cnvst_pwm_state.duty_cycle = 0;
return pwm_apply_might_sleep(st->cnvst_pwm, &cnvst_pwm_state);
}
static int ad7606_read_samples(struct ad7606_state *st)
{
unsigned int num = st->chip_info->num_adc_channels;
return st->bops->read_block(st->dev, num, &st->data);
}
static irqreturn_t ad7606_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct ad7606_state *st = iio_priv(indio_dev);
int ret;
guard(mutex)(&st->lock);
ret = ad7606_read_samples(st);
if (ret)
goto error_ret;
iio_push_to_buffers_with_timestamp(indio_dev, &st->data,
iio_get_time_ns(indio_dev));
error_ret:
iio_trigger_notify_done(indio_dev->trig);
/* The rising edge of the CONVST signal starts a new conversion. */
gpiod_set_value(st->gpio_convst, 1);
return IRQ_HANDLED;
}
static int ad7606_scan_direct(struct iio_dev *indio_dev, unsigned int ch,
int *val)
{
struct ad7606_state *st = iio_priv(indio_dev);
unsigned int realbits = st->chip_info->channels[1].scan_type.realbits;
const struct iio_chan_spec *chan;
int ret;
if (st->gpio_convst) {
gpiod_set_value(st->gpio_convst, 1);
} else {
ret = ad7606_pwm_set_high(st);
if (ret < 0)
return ret;
}
/*
* If no backend, wait for the interruption on busy pin, otherwise just add
* a delay to leave time for the data to be available. For now, the latter
* will not happen because IIO_CHAN_INFO_RAW is not supported for the backend.
* TODO: Add support for reading a single value when the backend is used.
*/
if (!st->back) {
ret = wait_for_completion_timeout(&st->completion,
msecs_to_jiffies(1000));
if (!ret) {
ret = -ETIMEDOUT;
goto error_ret;
}
} else {
fsleep(1);
}
ret = ad7606_read_samples(st);
if (ret)
goto error_ret;
chan = &indio_dev->channels[ch + 1];
if (chan->scan_type.sign == 'u') {
if (realbits > 16)
*val = st->data.buf32[ch];
else
*val = st->data.buf16[ch];
} else {
if (realbits > 16)
*val = sign_extend32(st->data.buf32[ch], realbits - 1);
else
*val = sign_extend32(st->data.buf16[ch], realbits - 1);
}
error_ret:
if (!st->gpio_convst) {
ret = ad7606_pwm_set_low(st);
if (ret < 0)
return ret;
}
gpiod_set_value(st->gpio_convst, 0);
return ret;
}
static int ad7606_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val,
int *val2,
long m)
{
int ret, ch = 0;
struct ad7606_state *st = iio_priv(indio_dev);
struct ad7606_chan_scale *cs;
struct pwm_state cnvst_pwm_state;
switch (m) {
case IIO_CHAN_INFO_RAW:
iio_device_claim_direct_scoped(return -EBUSY, indio_dev) {
ret = ad7606_scan_direct(indio_dev, chan->address, val);
if (ret < 0)
return ret;
return IIO_VAL_INT;
}
unreachable();
case IIO_CHAN_INFO_SCALE:
if (st->sw_mode_en)
ch = chan->address;
cs = &st->chan_scales[ch];
*val = cs->scale_avail[cs->range][0];
*val2 = cs->scale_avail[cs->range][1];
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = st->oversampling;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SAMP_FREQ:
/*
* TODO: return the real frequency intead of the requested one once
* pwm_get_state_hw comes upstream.
*/
pwm_get_state(st->cnvst_pwm, &cnvst_pwm_state);
*val = DIV_ROUND_CLOSEST_ULL(NSEC_PER_SEC, cnvst_pwm_state.period);
return IIO_VAL_INT;
}
return -EINVAL;
}
static ssize_t in_voltage_scale_available_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7606_state *st = iio_priv(indio_dev);
struct ad7606_chan_scale *cs = &st->chan_scales[0];
const unsigned int (*vals)[2] = cs->scale_avail;
unsigned int i;
size_t len = 0;
for (i = 0; i < cs->num_scales; i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%u.%06u ",
vals[i][0], vals[i][1]);
buf[len - 1] = '\n';
return len;
}
static IIO_DEVICE_ATTR_RO(in_voltage_scale_available, 0);
static int ad7606_write_scale_hw(struct iio_dev *indio_dev, int ch, int val)
{
struct ad7606_state *st = iio_priv(indio_dev);
gpiod_set_value(st->gpio_range, val);
return 0;
}
static int ad7606_write_os_hw(struct iio_dev *indio_dev, int val)
{
struct ad7606_state *st = iio_priv(indio_dev);
DECLARE_BITMAP(values, 3);
values[0] = val & GENMASK(2, 0);
gpiod_set_array_value(st->gpio_os->ndescs, st->gpio_os->desc,
st->gpio_os->info, values);
/* AD7616 requires a reset to update value */
if (st->chip_info->os_req_reset)
ad7606_reset(st);
return 0;
}
static int ad7606_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val,
int val2,
long mask)
{
struct ad7606_state *st = iio_priv(indio_dev);
unsigned int scale_avail_uv[AD760X_MAX_SCALES];
struct ad7606_chan_scale *cs;
int i, ret, ch = 0;
guard(mutex)(&st->lock);
switch (mask) {
case IIO_CHAN_INFO_SCALE:
if (st->sw_mode_en)
ch = chan->address;
cs = &st->chan_scales[ch];
for (i = 0; i < cs->num_scales; i++) {
scale_avail_uv[i] = cs->scale_avail[i][0] * MICRO +
cs->scale_avail[i][1];
}
val = (val * MICRO) + val2;
i = find_closest(val, scale_avail_uv, cs->num_scales);
ret = st->write_scale(indio_dev, ch, i + cs->reg_offset);
if (ret < 0)
return ret;
cs->range = i;
return 0;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
if (val2)
return -EINVAL;
i = find_closest(val, st->oversampling_avail,
st->num_os_ratios);
ret = st->write_os(indio_dev, i);
if (ret < 0)
return ret;
st->oversampling = st->oversampling_avail[i];
return 0;
case IIO_CHAN_INFO_SAMP_FREQ:
if (val < 0 && val2 != 0)
return -EINVAL;
return ad7606_set_sampling_freq(st, val);
default:
return -EINVAL;
}
}
static ssize_t ad7606_oversampling_ratio_avail(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct ad7606_state *st = iio_priv(indio_dev);
const unsigned int *vals = st->oversampling_avail;
unsigned int i;
size_t len = 0;
for (i = 0; i < st->num_os_ratios; i++)
len += scnprintf(buf + len, PAGE_SIZE - len, "%u ", vals[i]);
buf[len - 1] = '\n';
return len;
}
static IIO_DEVICE_ATTR(oversampling_ratio_available, 0444,
ad7606_oversampling_ratio_avail, NULL, 0);
static struct attribute *ad7606_attributes_os_and_range[] = {
&iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
&iio_dev_attr_oversampling_ratio_available.dev_attr.attr,
NULL,
};
static const struct attribute_group ad7606_attribute_group_os_and_range = {
.attrs = ad7606_attributes_os_and_range,
};
static struct attribute *ad7606_attributes_os[] = {
&iio_dev_attr_oversampling_ratio_available.dev_attr.attr,
NULL,
};
static const struct attribute_group ad7606_attribute_group_os = {
.attrs = ad7606_attributes_os,
};
static struct attribute *ad7606_attributes_range[] = {
&iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
NULL,
};
static const struct attribute_group ad7606_attribute_group_range = {
.attrs = ad7606_attributes_range,
};
static int ad7606_request_gpios(struct ad7606_state *st)
{
struct device *dev = st->dev;
st->gpio_convst = devm_gpiod_get_optional(dev, "adi,conversion-start",
GPIOD_OUT_LOW);
if (IS_ERR(st->gpio_convst))
return PTR_ERR(st->gpio_convst);
st->gpio_reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW);
if (IS_ERR(st->gpio_reset))
return PTR_ERR(st->gpio_reset);
st->gpio_range = devm_gpiod_get_optional(dev, "adi,range",
GPIOD_OUT_LOW);
if (IS_ERR(st->gpio_range))
return PTR_ERR(st->gpio_range);
st->gpio_standby = devm_gpiod_get_optional(dev, "standby",
GPIOD_OUT_LOW);
if (IS_ERR(st->gpio_standby))
return PTR_ERR(st->gpio_standby);
st->gpio_frstdata = devm_gpiod_get_optional(dev, "adi,first-data",
GPIOD_IN);
if (IS_ERR(st->gpio_frstdata))
return PTR_ERR(st->gpio_frstdata);
if (!st->chip_info->oversampling_num)
return 0;
st->gpio_os = devm_gpiod_get_array_optional(dev,
"adi,oversampling-ratio",
GPIOD_OUT_LOW);
return PTR_ERR_OR_ZERO(st->gpio_os);
}
/*
* The BUSY signal indicates when conversions are in progress, so when a rising
* edge of CONVST is applied, BUSY goes logic high and transitions low at the
* end of the entire conversion process. The falling edge of the BUSY signal
* triggers this interrupt.
*/
static irqreturn_t ad7606_interrupt(int irq, void *dev_id)
{
struct iio_dev *indio_dev = dev_id;
struct ad7606_state *st = iio_priv(indio_dev);
int ret;
if (iio_buffer_enabled(indio_dev)) {
if (st->gpio_convst) {
gpiod_set_value(st->gpio_convst, 0);
} else {
ret = ad7606_pwm_set_low(st);
if (ret < 0) {
dev_err(st->dev, "PWM set low failed");
goto done;
}
}
iio_trigger_poll_nested(st->trig);
} else {
complete(&st->completion);
}
done:
return IRQ_HANDLED;
};
static int ad7606_validate_trigger(struct iio_dev *indio_dev,
struct iio_trigger *trig)
{
struct ad7606_state *st = iio_priv(indio_dev);
if (st->trig != trig)
return -EINVAL;
return 0;
}
static int ad7606_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad7606_state *st = iio_priv(indio_dev);
gpiod_set_value(st->gpio_convst, 1);
return 0;
}
static int ad7606_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad7606_state *st = iio_priv(indio_dev);
gpiod_set_value(st->gpio_convst, 0);
return 0;
}
static int ad7606_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long info)
{
struct ad7606_state *st = iio_priv(indio_dev);
struct ad7606_chan_scale *cs;
unsigned int ch = 0;
switch (info) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*vals = st->oversampling_avail;
*length = st->num_os_ratios;
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
case IIO_CHAN_INFO_SCALE:
if (st->sw_mode_en)
ch = chan->address;
cs = &st->chan_scales[ch];
*vals = (int *)cs->scale_avail;
*length = cs->num_scales;
*type = IIO_VAL_INT_PLUS_MICRO;
return IIO_AVAIL_LIST;
}
return -EINVAL;
}
static int ad7606_backend_buffer_postenable(struct iio_dev *indio_dev)
{
struct ad7606_state *st = iio_priv(indio_dev);
return ad7606_pwm_set_swing(st);
}
static int ad7606_backend_buffer_predisable(struct iio_dev *indio_dev)
{
struct ad7606_state *st = iio_priv(indio_dev);
return ad7606_pwm_set_low(st);
}
static int ad7606_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct ad7606_state *st = iio_priv(indio_dev);
/*
* The update scan mode is only for iio backend compatible drivers.
* If the specific update_scan_mode is not defined in the bus ops,
* just do nothing and return 0.
*/
if (!st->bops->update_scan_mode)
return 0;
return st->bops->update_scan_mode(indio_dev, scan_mask);
}
static const struct iio_buffer_setup_ops ad7606_buffer_ops = {
.postenable = &ad7606_buffer_postenable,
.predisable = &ad7606_buffer_predisable,
};
static const struct iio_buffer_setup_ops ad7606_backend_buffer_ops = {
.postenable = &ad7606_backend_buffer_postenable,
.predisable = &ad7606_backend_buffer_predisable,
};
static const struct iio_info ad7606_info_no_os_or_range = {
.read_raw = &ad7606_read_raw,
.validate_trigger = &ad7606_validate_trigger,
.update_scan_mode = &ad7606_update_scan_mode,
};
static const struct iio_info ad7606_info_os_and_range = {
.read_raw = &ad7606_read_raw,
.write_raw = &ad7606_write_raw,
.attrs = &ad7606_attribute_group_os_and_range,
.validate_trigger = &ad7606_validate_trigger,
.update_scan_mode = &ad7606_update_scan_mode,
};
static const struct iio_info ad7606_info_sw_mode = {
.read_raw = &ad7606_read_raw,
.write_raw = &ad7606_write_raw,
.read_avail = &ad7606_read_avail,
.debugfs_reg_access = &ad7606_reg_access,
.validate_trigger = &ad7606_validate_trigger,
.update_scan_mode = &ad7606_update_scan_mode,
};
static const struct iio_info ad7606_info_os = {
.read_raw = &ad7606_read_raw,
.write_raw = &ad7606_write_raw,
.attrs = &ad7606_attribute_group_os,
.validate_trigger = &ad7606_validate_trigger,
.update_scan_mode = &ad7606_update_scan_mode,
};
static const struct iio_info ad7606_info_range = {
.read_raw = &ad7606_read_raw,
.write_raw = &ad7606_write_raw,
.attrs = &ad7606_attribute_group_range,
.validate_trigger = &ad7606_validate_trigger,
.update_scan_mode = &ad7606_update_scan_mode,
};
static const struct iio_trigger_ops ad7606_trigger_ops = {
.validate_device = iio_trigger_validate_own_device,
};
static int ad7606_sw_mode_setup(struct iio_dev *indio_dev)
{
struct ad7606_state *st = iio_priv(indio_dev);
st->sw_mode_en = st->bops->sw_mode_config &&
device_property_present(st->dev, "adi,sw-mode");
if (!st->sw_mode_en)
return 0;
indio_dev->info = &ad7606_info_sw_mode;
return st->bops->sw_mode_config(indio_dev);
}
static int ad7606_chan_scales_setup(struct iio_dev *indio_dev)
{
unsigned int num_channels = indio_dev->num_channels - 1;
struct ad7606_state *st = iio_priv(indio_dev);
struct iio_chan_spec *chans;
size_t size;
int ch, ret;
/* Clone IIO channels, since some may be differential */
size = indio_dev->num_channels * sizeof(*indio_dev->channels);
chans = devm_kzalloc(st->dev, size, GFP_KERNEL);
if (!chans)
return -ENOMEM;
memcpy(chans, indio_dev->channels, size);
indio_dev->channels = chans;
for (ch = 0; ch < num_channels; ch++) {
ret = st->chip_info->scale_setup_cb(st, &chans[ch + 1], ch);
if (ret)
return ret;
}
return 0;
}
static void ad7606_pwm_disable(void *data)
{
pwm_disable(data);
}
int ad7606_probe(struct device *dev, int irq, void __iomem *base_address,
const struct ad7606_chip_info *chip_info,
const struct ad7606_bus_ops *bops)
{
struct ad7606_state *st;
int ret;
struct iio_dev *indio_dev;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
st->dev = dev;
mutex_init(&st->lock);
st->bops = bops;
st->base_address = base_address;
st->oversampling = 1;
ret = devm_regulator_get_enable(dev, "avcc");
if (ret)
return dev_err_probe(dev, ret,
"Failed to enable specified AVcc supply\n");
st->chip_info = chip_info;
if (st->chip_info->oversampling_num) {
st->oversampling_avail = st->chip_info->oversampling_avail;
st->num_os_ratios = st->chip_info->oversampling_num;
}
ret = ad7606_request_gpios(st);
if (ret)
return ret;
if (st->gpio_os) {
if (st->gpio_range)
indio_dev->info = &ad7606_info_os_and_range;
else
indio_dev->info = &ad7606_info_os;
} else {
if (st->gpio_range)
indio_dev->info = &ad7606_info_range;
else
indio_dev->info = &ad7606_info_no_os_or_range;
}
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->name = chip_info->name;
indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = st->chip_info->num_channels;
ret = ad7606_reset(st);
if (ret)
dev_warn(st->dev, "failed to RESET: no RESET GPIO specified\n");
/* AD7616 requires al least 15ms to reconfigure after a reset */
if (st->chip_info->init_delay_ms) {
if (msleep_interruptible(st->chip_info->init_delay_ms))
return -ERESTARTSYS;
}
st->write_scale = ad7606_write_scale_hw;
st->write_os = ad7606_write_os_hw;
ret = ad7606_sw_mode_setup(indio_dev);
if (ret)
return ret;
ret = ad7606_chan_scales_setup(indio_dev);
if (ret)
return ret;
/* If convst pin is not defined, setup PWM. */
if (!st->gpio_convst) {
st->cnvst_pwm = devm_pwm_get(dev, NULL);
if (IS_ERR(st->cnvst_pwm))
return PTR_ERR(st->cnvst_pwm);
/* The PWM is initialized at 1MHz to have a fast enough GPIO emulation. */
ret = ad7606_set_sampling_freq(st, 1 * MEGA);
if (ret)
return ret;
ret = ad7606_pwm_set_low(st);
if (ret)
return ret;
/*
* PWM is not disabled when sampling stops, but instead its duty cycle is set
* to 0% to be sure we have a "low" state. After we unload the driver, let's
* disable the PWM.
*/
ret = devm_add_action_or_reset(dev, ad7606_pwm_disable,
st->cnvst_pwm);
if (ret)
return ret;
}
if (st->bops->iio_backend_config) {
/*
* If there is a backend, the PWM should not overpass the maximum sampling
* frequency the chip supports.
*/
ret = ad7606_set_sampling_freq(st,
chip_info->max_samplerate ? : 2 * KILO);
if (ret)
return ret;
ret = st->bops->iio_backend_config(dev, indio_dev);
if (ret)
return ret;
indio_dev->setup_ops = &ad7606_backend_buffer_ops;
} else {
/* Reserve the PWM use only for backend (force gpio_convst definition) */
if (!st->gpio_convst)
return dev_err_probe(dev, -EINVAL,
"No backend, connect convst to a GPIO");
init_completion(&st->completion);
st->trig = devm_iio_trigger_alloc(dev, "%s-dev%d",
indio_dev->name,
iio_device_id(indio_dev));
if (!st->trig)
return -ENOMEM;
st->trig->ops = &ad7606_trigger_ops;
iio_trigger_set_drvdata(st->trig, indio_dev);
ret = devm_iio_trigger_register(dev, st->trig);
if (ret)
return ret;
indio_dev->trig = iio_trigger_get(st->trig);
ret = devm_request_threaded_irq(dev, irq, NULL, &ad7606_interrupt,
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
chip_info->name, indio_dev);
if (ret)
return ret;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
&iio_pollfunc_store_time,
&ad7606_trigger_handler,
&ad7606_buffer_ops);
if (ret)
return ret;
}
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_NS_GPL(ad7606_probe, "IIO_AD7606");
#ifdef CONFIG_PM_SLEEP
static int ad7606_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad7606_state *st = iio_priv(indio_dev);
if (st->gpio_standby) {
gpiod_set_value(st->gpio_range, 1);
gpiod_set_value(st->gpio_standby, 1);
}
return 0;
}
static int ad7606_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct ad7606_state *st = iio_priv(indio_dev);
if (st->gpio_standby) {
gpiod_set_value(st->gpio_range, st->chan_scales[0].range);
gpiod_set_value(st->gpio_standby, 1);
ad7606_reset(st);
}
return 0;
}
SIMPLE_DEV_PM_OPS(ad7606_pm_ops, ad7606_suspend, ad7606_resume);
EXPORT_SYMBOL_NS_GPL(ad7606_pm_ops, "IIO_AD7606");
#endif
MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
MODULE_DESCRIPTION("Analog Devices AD7606 ADC");
MODULE_LICENSE("GPL v2");