772 lines
19 KiB
C
772 lines
19 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2021 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_irq.h"
|
|
|
|
#include <linux/sched/clock.h>
|
|
|
|
#include <drm/drm_managed.h>
|
|
|
|
#include "display/xe_display.h"
|
|
#include "regs/xe_irq_regs.h"
|
|
#include "xe_device.h"
|
|
#include "xe_drv.h"
|
|
#include "xe_gsc_proxy.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_guc.h"
|
|
#include "xe_hw_engine.h"
|
|
#include "xe_memirq.h"
|
|
#include "xe_mmio.h"
|
|
#include "xe_sriov.h"
|
|
|
|
/*
|
|
* Interrupt registers for a unit are always consecutive and ordered
|
|
* ISR, IMR, IIR, IER.
|
|
*/
|
|
#define IMR(offset) XE_REG(offset + 0x4)
|
|
#define IIR(offset) XE_REG(offset + 0x8)
|
|
#define IER(offset) XE_REG(offset + 0xc)
|
|
|
|
static void assert_iir_is_zero(struct xe_mmio *mmio, struct xe_reg reg)
|
|
{
|
|
u32 val = xe_mmio_read32(mmio, reg);
|
|
|
|
if (val == 0)
|
|
return;
|
|
|
|
drm_WARN(&mmio->tile->xe->drm, 1,
|
|
"Interrupt register 0x%x is not zero: 0x%08x\n",
|
|
reg.addr, val);
|
|
xe_mmio_write32(mmio, reg, 0xffffffff);
|
|
xe_mmio_read32(mmio, reg);
|
|
xe_mmio_write32(mmio, reg, 0xffffffff);
|
|
xe_mmio_read32(mmio, reg);
|
|
}
|
|
|
|
/*
|
|
* Unmask and enable the specified interrupts. Does not check current state,
|
|
* so any bits not specified here will become masked and disabled.
|
|
*/
|
|
static void unmask_and_enable(struct xe_tile *tile, u32 irqregs, u32 bits)
|
|
{
|
|
struct xe_mmio *mmio = &tile->mmio;
|
|
|
|
/*
|
|
* If we're just enabling an interrupt now, it shouldn't already
|
|
* be raised in the IIR.
|
|
*/
|
|
assert_iir_is_zero(mmio, IIR(irqregs));
|
|
|
|
xe_mmio_write32(mmio, IER(irqregs), bits);
|
|
xe_mmio_write32(mmio, IMR(irqregs), ~bits);
|
|
|
|
/* Posting read */
|
|
xe_mmio_read32(mmio, IMR(irqregs));
|
|
}
|
|
|
|
/* Mask and disable all interrupts. */
|
|
static void mask_and_disable(struct xe_tile *tile, u32 irqregs)
|
|
{
|
|
struct xe_mmio *mmio = &tile->mmio;
|
|
|
|
xe_mmio_write32(mmio, IMR(irqregs), ~0);
|
|
/* Posting read */
|
|
xe_mmio_read32(mmio, IMR(irqregs));
|
|
|
|
xe_mmio_write32(mmio, IER(irqregs), 0);
|
|
|
|
/* IIR can theoretically queue up two events. Be paranoid. */
|
|
xe_mmio_write32(mmio, IIR(irqregs), ~0);
|
|
xe_mmio_read32(mmio, IIR(irqregs));
|
|
xe_mmio_write32(mmio, IIR(irqregs), ~0);
|
|
xe_mmio_read32(mmio, IIR(irqregs));
|
|
}
|
|
|
|
static u32 xelp_intr_disable(struct xe_device *xe)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
|
|
|
|
xe_mmio_write32(mmio, GFX_MSTR_IRQ, 0);
|
|
|
|
/*
|
|
* Now with master disabled, get a sample of level indications
|
|
* for this interrupt. Indications will be cleared on related acks.
|
|
* New indications can and will light up during processing,
|
|
* and will generate new interrupt after enabling master.
|
|
*/
|
|
return xe_mmio_read32(mmio, GFX_MSTR_IRQ);
|
|
}
|
|
|
|
static u32
|
|
gu_misc_irq_ack(struct xe_device *xe, const u32 master_ctl)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
|
|
u32 iir;
|
|
|
|
if (!(master_ctl & GU_MISC_IRQ))
|
|
return 0;
|
|
|
|
iir = xe_mmio_read32(mmio, IIR(GU_MISC_IRQ_OFFSET));
|
|
if (likely(iir))
|
|
xe_mmio_write32(mmio, IIR(GU_MISC_IRQ_OFFSET), iir);
|
|
|
|
return iir;
|
|
}
|
|
|
|
static inline void xelp_intr_enable(struct xe_device *xe, bool stall)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
|
|
|
|
xe_mmio_write32(mmio, GFX_MSTR_IRQ, MASTER_IRQ);
|
|
if (stall)
|
|
xe_mmio_read32(mmio, GFX_MSTR_IRQ);
|
|
}
|
|
|
|
/* Enable/unmask the HWE interrupts for a specific GT's engines. */
|
|
void xe_irq_enable_hwe(struct xe_gt *gt)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
struct xe_mmio *mmio = >->mmio;
|
|
u32 ccs_mask, bcs_mask;
|
|
u32 irqs, dmask, smask;
|
|
u32 gsc_mask = 0;
|
|
u32 heci_mask = 0;
|
|
|
|
if (xe_device_uses_memirq(xe))
|
|
return;
|
|
|
|
if (xe_device_uc_enabled(xe)) {
|
|
irqs = GT_RENDER_USER_INTERRUPT |
|
|
GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
|
|
} else {
|
|
irqs = GT_RENDER_USER_INTERRUPT |
|
|
GT_CS_MASTER_ERROR_INTERRUPT |
|
|
GT_CONTEXT_SWITCH_INTERRUPT |
|
|
GT_WAIT_SEMAPHORE_INTERRUPT;
|
|
}
|
|
|
|
ccs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COMPUTE);
|
|
bcs_mask = xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_COPY);
|
|
|
|
dmask = irqs << 16 | irqs;
|
|
smask = irqs << 16;
|
|
|
|
if (!xe_gt_is_media_type(gt)) {
|
|
/* Enable interrupts for each engine class */
|
|
xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, dmask);
|
|
if (ccs_mask)
|
|
xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, smask);
|
|
|
|
/* Unmask interrupts for each engine instance */
|
|
xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~smask);
|
|
xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~smask);
|
|
if (bcs_mask & (BIT(1)|BIT(2)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask);
|
|
if (bcs_mask & (BIT(3)|BIT(4)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask);
|
|
if (bcs_mask & (BIT(5)|BIT(6)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask);
|
|
if (bcs_mask & (BIT(7)|BIT(8)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask);
|
|
if (ccs_mask & (BIT(0)|BIT(1)))
|
|
xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~dmask);
|
|
if (ccs_mask & (BIT(2)|BIT(3)))
|
|
xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~dmask);
|
|
}
|
|
|
|
if (xe_gt_is_media_type(gt) || MEDIA_VER(xe) < 13) {
|
|
/* Enable interrupts for each engine class */
|
|
xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, dmask);
|
|
|
|
/* Unmask interrupts for each engine instance */
|
|
xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~dmask);
|
|
xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~dmask);
|
|
xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~dmask);
|
|
|
|
/*
|
|
* the heci2 interrupt is enabled via the same register as the
|
|
* GSCCS interrupts, but it has its own mask register.
|
|
*/
|
|
if (xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_OTHER)) {
|
|
gsc_mask = irqs | GSC_ER_COMPLETE;
|
|
heci_mask = GSC_IRQ_INTF(1);
|
|
} else if (HAS_HECI_GSCFI(xe)) {
|
|
gsc_mask = GSC_IRQ_INTF(1);
|
|
}
|
|
|
|
if (gsc_mask) {
|
|
xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, gsc_mask | heci_mask);
|
|
xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~gsc_mask);
|
|
}
|
|
if (heci_mask)
|
|
xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~(heci_mask << 16));
|
|
}
|
|
}
|
|
|
|
static u32
|
|
gt_engine_identity(struct xe_device *xe,
|
|
struct xe_mmio *mmio,
|
|
const unsigned int bank,
|
|
const unsigned int bit)
|
|
{
|
|
u32 timeout_ts;
|
|
u32 ident;
|
|
|
|
lockdep_assert_held(&xe->irq.lock);
|
|
|
|
xe_mmio_write32(mmio, IIR_REG_SELECTOR(bank), BIT(bit));
|
|
|
|
/*
|
|
* NB: Specs do not specify how long to spin wait,
|
|
* so we do ~100us as an educated guess.
|
|
*/
|
|
timeout_ts = (local_clock() >> 10) + 100;
|
|
do {
|
|
ident = xe_mmio_read32(mmio, INTR_IDENTITY_REG(bank));
|
|
} while (!(ident & INTR_DATA_VALID) &&
|
|
!time_after32(local_clock() >> 10, timeout_ts));
|
|
|
|
if (unlikely(!(ident & INTR_DATA_VALID))) {
|
|
drm_err(&xe->drm, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
|
|
bank, bit, ident);
|
|
return 0;
|
|
}
|
|
|
|
xe_mmio_write32(mmio, INTR_IDENTITY_REG(bank), ident);
|
|
|
|
return ident;
|
|
}
|
|
|
|
#define OTHER_MEDIA_GUC_INSTANCE 16
|
|
|
|
static void
|
|
gt_other_irq_handler(struct xe_gt *gt, const u8 instance, const u16 iir)
|
|
{
|
|
if (instance == OTHER_GUC_INSTANCE && !xe_gt_is_media_type(gt))
|
|
return xe_guc_irq_handler(>->uc.guc, iir);
|
|
if (instance == OTHER_MEDIA_GUC_INSTANCE && xe_gt_is_media_type(gt))
|
|
return xe_guc_irq_handler(>->uc.guc, iir);
|
|
if (instance == OTHER_GSC_HECI2_INSTANCE && xe_gt_is_media_type(gt))
|
|
return xe_gsc_proxy_irq_handler(>->uc.gsc, iir);
|
|
|
|
if (instance != OTHER_GUC_INSTANCE &&
|
|
instance != OTHER_MEDIA_GUC_INSTANCE) {
|
|
WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
|
|
instance, iir);
|
|
}
|
|
}
|
|
|
|
static struct xe_gt *pick_engine_gt(struct xe_tile *tile,
|
|
enum xe_engine_class class,
|
|
unsigned int instance)
|
|
{
|
|
struct xe_device *xe = tile_to_xe(tile);
|
|
|
|
if (MEDIA_VER(xe) < 13)
|
|
return tile->primary_gt;
|
|
|
|
switch (class) {
|
|
case XE_ENGINE_CLASS_VIDEO_DECODE:
|
|
case XE_ENGINE_CLASS_VIDEO_ENHANCE:
|
|
return tile->media_gt;
|
|
case XE_ENGINE_CLASS_OTHER:
|
|
switch (instance) {
|
|
case OTHER_MEDIA_GUC_INSTANCE:
|
|
case OTHER_GSC_INSTANCE:
|
|
case OTHER_GSC_HECI2_INSTANCE:
|
|
return tile->media_gt;
|
|
default:
|
|
break;
|
|
}
|
|
fallthrough;
|
|
default:
|
|
return tile->primary_gt;
|
|
}
|
|
}
|
|
|
|
static void gt_irq_handler(struct xe_tile *tile,
|
|
u32 master_ctl, unsigned long *intr_dw,
|
|
u32 *identity)
|
|
{
|
|
struct xe_device *xe = tile_to_xe(tile);
|
|
struct xe_mmio *mmio = &tile->mmio;
|
|
unsigned int bank, bit;
|
|
u16 instance, intr_vec;
|
|
enum xe_engine_class class;
|
|
struct xe_hw_engine *hwe;
|
|
|
|
spin_lock(&xe->irq.lock);
|
|
|
|
for (bank = 0; bank < 2; bank++) {
|
|
if (!(master_ctl & GT_DW_IRQ(bank)))
|
|
continue;
|
|
|
|
intr_dw[bank] = xe_mmio_read32(mmio, GT_INTR_DW(bank));
|
|
for_each_set_bit(bit, intr_dw + bank, 32)
|
|
identity[bit] = gt_engine_identity(xe, mmio, bank, bit);
|
|
xe_mmio_write32(mmio, GT_INTR_DW(bank), intr_dw[bank]);
|
|
|
|
for_each_set_bit(bit, intr_dw + bank, 32) {
|
|
struct xe_gt *engine_gt;
|
|
|
|
class = INTR_ENGINE_CLASS(identity[bit]);
|
|
instance = INTR_ENGINE_INSTANCE(identity[bit]);
|
|
intr_vec = INTR_ENGINE_INTR(identity[bit]);
|
|
|
|
engine_gt = pick_engine_gt(tile, class, instance);
|
|
|
|
hwe = xe_gt_hw_engine(engine_gt, class, instance, false);
|
|
if (hwe) {
|
|
xe_hw_engine_handle_irq(hwe, intr_vec);
|
|
continue;
|
|
}
|
|
|
|
if (class == XE_ENGINE_CLASS_OTHER) {
|
|
/* HECI GSCFI interrupts come from outside of GT */
|
|
if (HAS_HECI_GSCFI(xe) && instance == OTHER_GSC_INSTANCE)
|
|
xe_heci_gsc_irq_handler(xe, intr_vec);
|
|
else
|
|
gt_other_irq_handler(engine_gt, instance, intr_vec);
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_unlock(&xe->irq.lock);
|
|
}
|
|
|
|
/*
|
|
* Top-level interrupt handler for Xe_LP platforms (which did not have
|
|
* a "master tile" interrupt register.
|
|
*/
|
|
static irqreturn_t xelp_irq_handler(int irq, void *arg)
|
|
{
|
|
struct xe_device *xe = arg;
|
|
struct xe_tile *tile = xe_device_get_root_tile(xe);
|
|
u32 master_ctl, gu_misc_iir;
|
|
unsigned long intr_dw[2];
|
|
u32 identity[32];
|
|
|
|
spin_lock(&xe->irq.lock);
|
|
if (!xe->irq.enabled) {
|
|
spin_unlock(&xe->irq.lock);
|
|
return IRQ_NONE;
|
|
}
|
|
spin_unlock(&xe->irq.lock);
|
|
|
|
master_ctl = xelp_intr_disable(xe);
|
|
if (!master_ctl) {
|
|
xelp_intr_enable(xe, false);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
gt_irq_handler(tile, master_ctl, intr_dw, identity);
|
|
|
|
xe_display_irq_handler(xe, master_ctl);
|
|
|
|
gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
|
|
|
|
xelp_intr_enable(xe, false);
|
|
|
|
xe_display_irq_enable(xe, gu_misc_iir);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static u32 dg1_intr_disable(struct xe_device *xe)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
|
|
u32 val;
|
|
|
|
/* First disable interrupts */
|
|
xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, 0);
|
|
|
|
/* Get the indication levels and ack the master unit */
|
|
val = xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
|
|
if (unlikely(!val))
|
|
return 0;
|
|
|
|
xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, val);
|
|
|
|
return val;
|
|
}
|
|
|
|
static void dg1_intr_enable(struct xe_device *xe, bool stall)
|
|
{
|
|
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
|
|
|
|
xe_mmio_write32(mmio, DG1_MSTR_TILE_INTR, DG1_MSTR_IRQ);
|
|
if (stall)
|
|
xe_mmio_read32(mmio, DG1_MSTR_TILE_INTR);
|
|
}
|
|
|
|
/*
|
|
* Top-level interrupt handler for Xe_LP+ and beyond. These platforms have
|
|
* a "master tile" interrupt register which must be consulted before the
|
|
* "graphics master" interrupt register.
|
|
*/
|
|
static irqreturn_t dg1_irq_handler(int irq, void *arg)
|
|
{
|
|
struct xe_device *xe = arg;
|
|
struct xe_tile *tile;
|
|
u32 master_tile_ctl, master_ctl = 0, gu_misc_iir = 0;
|
|
unsigned long intr_dw[2];
|
|
u32 identity[32];
|
|
u8 id;
|
|
|
|
/* TODO: This really shouldn't be copied+pasted */
|
|
|
|
spin_lock(&xe->irq.lock);
|
|
if (!xe->irq.enabled) {
|
|
spin_unlock(&xe->irq.lock);
|
|
return IRQ_NONE;
|
|
}
|
|
spin_unlock(&xe->irq.lock);
|
|
|
|
master_tile_ctl = dg1_intr_disable(xe);
|
|
if (!master_tile_ctl) {
|
|
dg1_intr_enable(xe, false);
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
for_each_tile(tile, xe, id) {
|
|
struct xe_mmio *mmio = &tile->mmio;
|
|
|
|
if ((master_tile_ctl & DG1_MSTR_TILE(tile->id)) == 0)
|
|
continue;
|
|
|
|
master_ctl = xe_mmio_read32(mmio, GFX_MSTR_IRQ);
|
|
|
|
/*
|
|
* We might be in irq handler just when PCIe DPC is initiated
|
|
* and all MMIO reads will be returned with all 1's. Ignore this
|
|
* irq as device is inaccessible.
|
|
*/
|
|
if (master_ctl == REG_GENMASK(31, 0)) {
|
|
drm_dbg(&tile_to_xe(tile)->drm,
|
|
"Ignore this IRQ as device might be in DPC containment.\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
xe_mmio_write32(mmio, GFX_MSTR_IRQ, master_ctl);
|
|
|
|
gt_irq_handler(tile, master_ctl, intr_dw, identity);
|
|
|
|
/*
|
|
* Display interrupts (including display backlight operations
|
|
* that get reported as Gunit GSE) would only be hooked up to
|
|
* the primary tile.
|
|
*/
|
|
if (id == 0) {
|
|
if (HAS_HECI_CSCFI(xe))
|
|
xe_heci_csc_irq_handler(xe, master_ctl);
|
|
xe_display_irq_handler(xe, master_ctl);
|
|
gu_misc_iir = gu_misc_irq_ack(xe, master_ctl);
|
|
}
|
|
}
|
|
|
|
dg1_intr_enable(xe, false);
|
|
xe_display_irq_enable(xe, gu_misc_iir);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static void gt_irq_reset(struct xe_tile *tile)
|
|
{
|
|
struct xe_mmio *mmio = &tile->mmio;
|
|
|
|
u32 ccs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
|
|
XE_ENGINE_CLASS_COMPUTE);
|
|
u32 bcs_mask = xe_hw_engine_mask_per_class(tile->primary_gt,
|
|
XE_ENGINE_CLASS_COPY);
|
|
|
|
/* Disable RCS, BCS, VCS and VECS class engines. */
|
|
xe_mmio_write32(mmio, RENDER_COPY_INTR_ENABLE, 0);
|
|
xe_mmio_write32(mmio, VCS_VECS_INTR_ENABLE, 0);
|
|
if (ccs_mask)
|
|
xe_mmio_write32(mmio, CCS_RSVD_INTR_ENABLE, 0);
|
|
|
|
/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
|
|
xe_mmio_write32(mmio, RCS0_RSVD_INTR_MASK, ~0);
|
|
xe_mmio_write32(mmio, BCS_RSVD_INTR_MASK, ~0);
|
|
if (bcs_mask & (BIT(1)|BIT(2)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS1_BCS2_INTR_MASK, ~0);
|
|
if (bcs_mask & (BIT(3)|BIT(4)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS3_BCS4_INTR_MASK, ~0);
|
|
if (bcs_mask & (BIT(5)|BIT(6)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS5_BCS6_INTR_MASK, ~0);
|
|
if (bcs_mask & (BIT(7)|BIT(8)))
|
|
xe_mmio_write32(mmio, XEHPC_BCS7_BCS8_INTR_MASK, ~0);
|
|
xe_mmio_write32(mmio, VCS0_VCS1_INTR_MASK, ~0);
|
|
xe_mmio_write32(mmio, VCS2_VCS3_INTR_MASK, ~0);
|
|
xe_mmio_write32(mmio, VECS0_VECS1_INTR_MASK, ~0);
|
|
if (ccs_mask & (BIT(0)|BIT(1)))
|
|
xe_mmio_write32(mmio, CCS0_CCS1_INTR_MASK, ~0);
|
|
if (ccs_mask & (BIT(2)|BIT(3)))
|
|
xe_mmio_write32(mmio, CCS2_CCS3_INTR_MASK, ~0);
|
|
|
|
if ((tile->media_gt &&
|
|
xe_hw_engine_mask_per_class(tile->media_gt, XE_ENGINE_CLASS_OTHER)) ||
|
|
HAS_HECI_GSCFI(tile_to_xe(tile))) {
|
|
xe_mmio_write32(mmio, GUNIT_GSC_INTR_ENABLE, 0);
|
|
xe_mmio_write32(mmio, GUNIT_GSC_INTR_MASK, ~0);
|
|
xe_mmio_write32(mmio, HECI2_RSVD_INTR_MASK, ~0);
|
|
}
|
|
|
|
xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_ENABLE, 0);
|
|
xe_mmio_write32(mmio, GPM_WGBOXPERF_INTR_MASK, ~0);
|
|
xe_mmio_write32(mmio, GUC_SG_INTR_ENABLE, 0);
|
|
xe_mmio_write32(mmio, GUC_SG_INTR_MASK, ~0);
|
|
}
|
|
|
|
static void xelp_irq_reset(struct xe_tile *tile)
|
|
{
|
|
xelp_intr_disable(tile_to_xe(tile));
|
|
|
|
gt_irq_reset(tile);
|
|
|
|
if (IS_SRIOV_VF(tile_to_xe(tile)))
|
|
return;
|
|
|
|
mask_and_disable(tile, PCU_IRQ_OFFSET);
|
|
}
|
|
|
|
static void dg1_irq_reset(struct xe_tile *tile)
|
|
{
|
|
if (tile->id == 0)
|
|
dg1_intr_disable(tile_to_xe(tile));
|
|
|
|
gt_irq_reset(tile);
|
|
|
|
if (IS_SRIOV_VF(tile_to_xe(tile)))
|
|
return;
|
|
|
|
mask_and_disable(tile, PCU_IRQ_OFFSET);
|
|
}
|
|
|
|
static void dg1_irq_reset_mstr(struct xe_tile *tile)
|
|
{
|
|
struct xe_mmio *mmio = &tile->mmio;
|
|
|
|
xe_mmio_write32(mmio, GFX_MSTR_IRQ, ~0);
|
|
}
|
|
|
|
static void vf_irq_reset(struct xe_device *xe)
|
|
{
|
|
struct xe_tile *tile;
|
|
unsigned int id;
|
|
|
|
xe_assert(xe, IS_SRIOV_VF(xe));
|
|
|
|
if (GRAPHICS_VERx100(xe) < 1210)
|
|
xelp_intr_disable(xe);
|
|
else
|
|
xe_assert(xe, xe_device_has_memirq(xe));
|
|
|
|
for_each_tile(tile, xe, id) {
|
|
if (xe_device_has_memirq(xe))
|
|
xe_memirq_reset(&tile->memirq);
|
|
else
|
|
gt_irq_reset(tile);
|
|
}
|
|
}
|
|
|
|
static void xe_irq_reset(struct xe_device *xe)
|
|
{
|
|
struct xe_tile *tile;
|
|
u8 id;
|
|
|
|
if (IS_SRIOV_VF(xe))
|
|
return vf_irq_reset(xe);
|
|
|
|
for_each_tile(tile, xe, id) {
|
|
if (GRAPHICS_VERx100(xe) >= 1210)
|
|
dg1_irq_reset(tile);
|
|
else
|
|
xelp_irq_reset(tile);
|
|
}
|
|
|
|
tile = xe_device_get_root_tile(xe);
|
|
mask_and_disable(tile, GU_MISC_IRQ_OFFSET);
|
|
xe_display_irq_reset(xe);
|
|
|
|
/*
|
|
* The tile's top-level status register should be the last one
|
|
* to be reset to avoid possible bit re-latching from lower
|
|
* level interrupts.
|
|
*/
|
|
if (GRAPHICS_VERx100(xe) >= 1210) {
|
|
for_each_tile(tile, xe, id)
|
|
dg1_irq_reset_mstr(tile);
|
|
}
|
|
}
|
|
|
|
static void vf_irq_postinstall(struct xe_device *xe)
|
|
{
|
|
struct xe_tile *tile;
|
|
unsigned int id;
|
|
|
|
for_each_tile(tile, xe, id)
|
|
if (xe_device_has_memirq(xe))
|
|
xe_memirq_postinstall(&tile->memirq);
|
|
|
|
if (GRAPHICS_VERx100(xe) < 1210)
|
|
xelp_intr_enable(xe, true);
|
|
else
|
|
xe_assert(xe, xe_device_has_memirq(xe));
|
|
}
|
|
|
|
static void xe_irq_postinstall(struct xe_device *xe)
|
|
{
|
|
if (IS_SRIOV_VF(xe))
|
|
return vf_irq_postinstall(xe);
|
|
|
|
xe_display_irq_postinstall(xe, xe_root_mmio_gt(xe));
|
|
|
|
/*
|
|
* ASLE backlight operations are reported via GUnit GSE interrupts
|
|
* on the root tile.
|
|
*/
|
|
unmask_and_enable(xe_device_get_root_tile(xe),
|
|
GU_MISC_IRQ_OFFSET, GU_MISC_GSE);
|
|
|
|
/* Enable top-level interrupts */
|
|
if (GRAPHICS_VERx100(xe) >= 1210)
|
|
dg1_intr_enable(xe, true);
|
|
else
|
|
xelp_intr_enable(xe, true);
|
|
}
|
|
|
|
static irqreturn_t vf_mem_irq_handler(int irq, void *arg)
|
|
{
|
|
struct xe_device *xe = arg;
|
|
struct xe_tile *tile;
|
|
unsigned int id;
|
|
|
|
spin_lock(&xe->irq.lock);
|
|
if (!xe->irq.enabled) {
|
|
spin_unlock(&xe->irq.lock);
|
|
return IRQ_NONE;
|
|
}
|
|
spin_unlock(&xe->irq.lock);
|
|
|
|
for_each_tile(tile, xe, id)
|
|
xe_memirq_handler(&tile->memirq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irq_handler_t xe_irq_handler(struct xe_device *xe)
|
|
{
|
|
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe))
|
|
return vf_mem_irq_handler;
|
|
|
|
if (GRAPHICS_VERx100(xe) >= 1210)
|
|
return dg1_irq_handler;
|
|
else
|
|
return xelp_irq_handler;
|
|
}
|
|
|
|
static void irq_uninstall(void *arg)
|
|
{
|
|
struct xe_device *xe = arg;
|
|
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
|
|
int irq;
|
|
|
|
if (!xe->irq.enabled)
|
|
return;
|
|
|
|
xe->irq.enabled = false;
|
|
xe_irq_reset(xe);
|
|
|
|
irq = pci_irq_vector(pdev, 0);
|
|
free_irq(irq, xe);
|
|
}
|
|
|
|
int xe_irq_install(struct xe_device *xe)
|
|
{
|
|
struct pci_dev *pdev = to_pci_dev(xe->drm.dev);
|
|
unsigned int irq_flags = PCI_IRQ_MSIX;
|
|
irq_handler_t irq_handler;
|
|
int err, irq, nvec;
|
|
|
|
irq_handler = xe_irq_handler(xe);
|
|
if (!irq_handler) {
|
|
drm_err(&xe->drm, "No supported interrupt handler");
|
|
return -EINVAL;
|
|
}
|
|
|
|
xe_irq_reset(xe);
|
|
|
|
nvec = pci_msix_vec_count(pdev);
|
|
if (nvec <= 0) {
|
|
if (nvec == -EINVAL) {
|
|
/* MSIX capability is not supported in the device, using MSI */
|
|
irq_flags = PCI_IRQ_MSI;
|
|
nvec = 1;
|
|
} else {
|
|
drm_err(&xe->drm, "MSIX: Failed getting count\n");
|
|
return nvec;
|
|
}
|
|
}
|
|
|
|
err = pci_alloc_irq_vectors(pdev, nvec, nvec, irq_flags);
|
|
if (err < 0) {
|
|
drm_err(&xe->drm, "MSI/MSIX: Failed to enable support %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
irq = pci_irq_vector(pdev, 0);
|
|
err = request_irq(irq, irq_handler, IRQF_SHARED, DRIVER_NAME, xe);
|
|
if (err < 0) {
|
|
drm_err(&xe->drm, "Failed to request MSI/MSIX IRQ %d\n", err);
|
|
return err;
|
|
}
|
|
|
|
xe->irq.enabled = true;
|
|
|
|
xe_irq_postinstall(xe);
|
|
|
|
err = devm_add_action_or_reset(xe->drm.dev, irq_uninstall, xe);
|
|
if (err)
|
|
goto free_irq_handler;
|
|
|
|
return 0;
|
|
|
|
free_irq_handler:
|
|
free_irq(irq, xe);
|
|
|
|
return err;
|
|
}
|
|
|
|
void xe_irq_suspend(struct xe_device *xe)
|
|
{
|
|
int irq = to_pci_dev(xe->drm.dev)->irq;
|
|
|
|
spin_lock_irq(&xe->irq.lock);
|
|
xe->irq.enabled = false; /* no new irqs */
|
|
spin_unlock_irq(&xe->irq.lock);
|
|
|
|
synchronize_irq(irq); /* flush irqs */
|
|
xe_irq_reset(xe); /* turn irqs off */
|
|
}
|
|
|
|
void xe_irq_resume(struct xe_device *xe)
|
|
{
|
|
struct xe_gt *gt;
|
|
int id;
|
|
|
|
/*
|
|
* lock not needed:
|
|
* 1. no irq will arrive before the postinstall
|
|
* 2. display is not yet resumed
|
|
*/
|
|
xe->irq.enabled = true;
|
|
xe_irq_reset(xe);
|
|
xe_irq_postinstall(xe); /* turn irqs on */
|
|
|
|
for_each_gt(gt, xe, id)
|
|
xe_irq_enable_hwe(gt);
|
|
}
|