642 lines
15 KiB
C
642 lines
15 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Memory bandwidth monitoring and allocation library
|
|
*
|
|
* Copyright (C) 2018 Intel Corporation
|
|
*
|
|
* Authors:
|
|
* Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>,
|
|
* Fenghua Yu <fenghua.yu@intel.com>
|
|
*/
|
|
#include "resctrl.h"
|
|
|
|
#define UNCORE_IMC "uncore_imc"
|
|
#define READ_FILE_NAME "events/cas_count_read"
|
|
#define DYN_PMU_PATH "/sys/bus/event_source/devices"
|
|
#define SCALE 0.00006103515625
|
|
#define MAX_IMCS 20
|
|
#define MAX_TOKENS 5
|
|
|
|
#define CON_MBM_LOCAL_BYTES_PATH \
|
|
"%s/%s/mon_data/mon_L3_%02d/mbm_local_bytes"
|
|
|
|
struct membw_read_format {
|
|
__u64 value; /* The value of the event */
|
|
__u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
|
|
__u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
|
|
__u64 id; /* if PERF_FORMAT_ID */
|
|
};
|
|
|
|
struct imc_counter_config {
|
|
__u32 type;
|
|
__u64 event;
|
|
__u64 umask;
|
|
struct perf_event_attr pe;
|
|
struct membw_read_format return_value;
|
|
int fd;
|
|
};
|
|
|
|
static char mbm_total_path[1024];
|
|
static int imcs;
|
|
static struct imc_counter_config imc_counters_config[MAX_IMCS];
|
|
static const struct resctrl_test *current_test;
|
|
|
|
static void read_mem_bw_initialize_perf_event_attr(int i)
|
|
{
|
|
memset(&imc_counters_config[i].pe, 0,
|
|
sizeof(struct perf_event_attr));
|
|
imc_counters_config[i].pe.type = imc_counters_config[i].type;
|
|
imc_counters_config[i].pe.size = sizeof(struct perf_event_attr);
|
|
imc_counters_config[i].pe.disabled = 1;
|
|
imc_counters_config[i].pe.inherit = 1;
|
|
imc_counters_config[i].pe.exclude_guest = 0;
|
|
imc_counters_config[i].pe.config =
|
|
imc_counters_config[i].umask << 8 |
|
|
imc_counters_config[i].event;
|
|
imc_counters_config[i].pe.sample_type = PERF_SAMPLE_IDENTIFIER;
|
|
imc_counters_config[i].pe.read_format =
|
|
PERF_FORMAT_TOTAL_TIME_ENABLED | PERF_FORMAT_TOTAL_TIME_RUNNING;
|
|
}
|
|
|
|
static void read_mem_bw_ioctl_perf_event_ioc_reset_enable(int i)
|
|
{
|
|
ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_RESET, 0);
|
|
ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_ENABLE, 0);
|
|
}
|
|
|
|
static void read_mem_bw_ioctl_perf_event_ioc_disable(int i)
|
|
{
|
|
ioctl(imc_counters_config[i].fd, PERF_EVENT_IOC_DISABLE, 0);
|
|
}
|
|
|
|
/*
|
|
* get_read_event_and_umask: Parse config into event and umask
|
|
* @cas_count_cfg: Config
|
|
* @count: iMC number
|
|
*/
|
|
static void get_read_event_and_umask(char *cas_count_cfg, int count)
|
|
{
|
|
char *token[MAX_TOKENS];
|
|
int i = 0;
|
|
|
|
token[0] = strtok(cas_count_cfg, "=,");
|
|
|
|
for (i = 1; i < MAX_TOKENS; i++)
|
|
token[i] = strtok(NULL, "=,");
|
|
|
|
for (i = 0; i < MAX_TOKENS - 1; i++) {
|
|
if (!token[i])
|
|
break;
|
|
if (strcmp(token[i], "event") == 0)
|
|
imc_counters_config[count].event = strtol(token[i + 1], NULL, 16);
|
|
if (strcmp(token[i], "umask") == 0)
|
|
imc_counters_config[count].umask = strtol(token[i + 1], NULL, 16);
|
|
}
|
|
}
|
|
|
|
static int open_perf_read_event(int i, int cpu_no)
|
|
{
|
|
imc_counters_config[i].fd =
|
|
perf_event_open(&imc_counters_config[i].pe, -1, cpu_no, -1,
|
|
PERF_FLAG_FD_CLOEXEC);
|
|
|
|
if (imc_counters_config[i].fd == -1) {
|
|
fprintf(stderr, "Error opening leader %llx\n",
|
|
imc_counters_config[i].pe.config);
|
|
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get type and config of an iMC counter's read event. */
|
|
static int read_from_imc_dir(char *imc_dir, int count)
|
|
{
|
|
char cas_count_cfg[1024], imc_counter_cfg[1024], imc_counter_type[1024];
|
|
FILE *fp;
|
|
|
|
/* Get type of iMC counter */
|
|
sprintf(imc_counter_type, "%s%s", imc_dir, "type");
|
|
fp = fopen(imc_counter_type, "r");
|
|
if (!fp) {
|
|
ksft_perror("Failed to open iMC counter type file");
|
|
|
|
return -1;
|
|
}
|
|
if (fscanf(fp, "%u", &imc_counters_config[count].type) <= 0) {
|
|
ksft_perror("Could not get iMC type");
|
|
fclose(fp);
|
|
|
|
return -1;
|
|
}
|
|
fclose(fp);
|
|
|
|
/* Get read config */
|
|
sprintf(imc_counter_cfg, "%s%s", imc_dir, READ_FILE_NAME);
|
|
fp = fopen(imc_counter_cfg, "r");
|
|
if (!fp) {
|
|
ksft_perror("Failed to open iMC config file");
|
|
|
|
return -1;
|
|
}
|
|
if (fscanf(fp, "%1023s", cas_count_cfg) <= 0) {
|
|
ksft_perror("Could not get iMC cas count read");
|
|
fclose(fp);
|
|
|
|
return -1;
|
|
}
|
|
fclose(fp);
|
|
|
|
get_read_event_and_umask(cas_count_cfg, count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* A system can have 'n' number of iMC (Integrated Memory Controller)
|
|
* counters, get that 'n'. Discover the properties of the available
|
|
* counters in support of needed performance measurement via perf.
|
|
* For each iMC counter get it's type and config. Also obtain each
|
|
* counter's event and umask for the memory read events that will be
|
|
* measured.
|
|
*
|
|
* Enumerate all these details into an array of structures.
|
|
*
|
|
* Return: >= 0 on success. < 0 on failure.
|
|
*/
|
|
static int num_of_imcs(void)
|
|
{
|
|
char imc_dir[512], *temp;
|
|
unsigned int count = 0;
|
|
struct dirent *ep;
|
|
int ret;
|
|
DIR *dp;
|
|
|
|
dp = opendir(DYN_PMU_PATH);
|
|
if (dp) {
|
|
while ((ep = readdir(dp))) {
|
|
temp = strstr(ep->d_name, UNCORE_IMC);
|
|
if (!temp)
|
|
continue;
|
|
|
|
/*
|
|
* imc counters are named as "uncore_imc_<n>", hence
|
|
* increment the pointer to point to <n>. Note that
|
|
* sizeof(UNCORE_IMC) would count for null character as
|
|
* well and hence the last underscore character in
|
|
* uncore_imc'_' need not be counted.
|
|
*/
|
|
temp = temp + sizeof(UNCORE_IMC);
|
|
|
|
/*
|
|
* Some directories under "DYN_PMU_PATH" could have
|
|
* names like "uncore_imc_free_running", hence, check if
|
|
* first character is a numerical digit or not.
|
|
*/
|
|
if (temp[0] >= '0' && temp[0] <= '9') {
|
|
sprintf(imc_dir, "%s/%s/", DYN_PMU_PATH,
|
|
ep->d_name);
|
|
ret = read_from_imc_dir(imc_dir, count);
|
|
if (ret) {
|
|
closedir(dp);
|
|
|
|
return ret;
|
|
}
|
|
count++;
|
|
}
|
|
}
|
|
closedir(dp);
|
|
if (count == 0) {
|
|
ksft_print_msg("Unable to find iMC counters\n");
|
|
|
|
return -1;
|
|
}
|
|
} else {
|
|
ksft_perror("Unable to open PMU directory");
|
|
|
|
return -1;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
int initialize_read_mem_bw_imc(void)
|
|
{
|
|
int imc;
|
|
|
|
imcs = num_of_imcs();
|
|
if (imcs <= 0)
|
|
return imcs;
|
|
|
|
/* Initialize perf_event_attr structures for all iMC's */
|
|
for (imc = 0; imc < imcs; imc++)
|
|
read_mem_bw_initialize_perf_event_attr(imc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void perf_close_imc_read_mem_bw(void)
|
|
{
|
|
int mc;
|
|
|
|
for (mc = 0; mc < imcs; mc++) {
|
|
if (imc_counters_config[mc].fd != -1)
|
|
close(imc_counters_config[mc].fd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* perf_open_imc_read_mem_bw - Open perf fds for IMCs
|
|
* @cpu_no: CPU number that the benchmark PID is bound to
|
|
*
|
|
* Return: = 0 on success. < 0 on failure.
|
|
*/
|
|
static int perf_open_imc_read_mem_bw(int cpu_no)
|
|
{
|
|
int imc, ret;
|
|
|
|
for (imc = 0; imc < imcs; imc++)
|
|
imc_counters_config[imc].fd = -1;
|
|
|
|
for (imc = 0; imc < imcs; imc++) {
|
|
ret = open_perf_read_event(imc, cpu_no);
|
|
if (ret)
|
|
goto close_fds;
|
|
}
|
|
|
|
return 0;
|
|
|
|
close_fds:
|
|
perf_close_imc_read_mem_bw();
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* do_imc_read_mem_bw_test - Perform memory bandwidth test
|
|
*
|
|
* Runs memory bandwidth test over one second period. Also, handles starting
|
|
* and stopping of the IMC perf counters around the test.
|
|
*/
|
|
static void do_imc_read_mem_bw_test(void)
|
|
{
|
|
int imc;
|
|
|
|
for (imc = 0; imc < imcs; imc++)
|
|
read_mem_bw_ioctl_perf_event_ioc_reset_enable(imc);
|
|
|
|
sleep(1);
|
|
|
|
/* Stop counters after a second to get results. */
|
|
for (imc = 0; imc < imcs; imc++)
|
|
read_mem_bw_ioctl_perf_event_ioc_disable(imc);
|
|
}
|
|
|
|
/*
|
|
* get_read_mem_bw_imc - Memory read bandwidth as reported by iMC counters
|
|
*
|
|
* Memory read bandwidth utilized by a process on a socket can be calculated
|
|
* using iMC counters' read events. Perf events are used to read these
|
|
* counters.
|
|
*
|
|
* Return: = 0 on success. < 0 on failure.
|
|
*/
|
|
static int get_read_mem_bw_imc(float *bw_imc)
|
|
{
|
|
float reads = 0, of_mul_read = 1;
|
|
int imc;
|
|
|
|
/*
|
|
* Log read event values from all iMC counters into
|
|
* struct imc_counter_config.
|
|
* Take overflow into consideration before calculating total bandwidth.
|
|
*/
|
|
for (imc = 0; imc < imcs; imc++) {
|
|
struct imc_counter_config *r =
|
|
&imc_counters_config[imc];
|
|
|
|
if (read(r->fd, &r->return_value,
|
|
sizeof(struct membw_read_format)) == -1) {
|
|
ksft_perror("Couldn't get read bandwidth through iMC");
|
|
return -1;
|
|
}
|
|
|
|
__u64 r_time_enabled = r->return_value.time_enabled;
|
|
__u64 r_time_running = r->return_value.time_running;
|
|
|
|
if (r_time_enabled != r_time_running)
|
|
of_mul_read = (float)r_time_enabled /
|
|
(float)r_time_running;
|
|
|
|
reads += r->return_value.value * of_mul_read * SCALE;
|
|
}
|
|
|
|
*bw_imc = reads;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* initialize_mem_bw_resctrl: Appropriately populate "mbm_total_path"
|
|
* @param: Parameters passed to resctrl_val()
|
|
* @domain_id: Domain ID (cache ID; for MB, L3 cache ID)
|
|
*/
|
|
void initialize_mem_bw_resctrl(const struct resctrl_val_param *param,
|
|
int domain_id)
|
|
{
|
|
sprintf(mbm_total_path, CON_MBM_LOCAL_BYTES_PATH, RESCTRL_PATH,
|
|
param->ctrlgrp, domain_id);
|
|
}
|
|
|
|
/*
|
|
* Open file to read MBM local bytes from resctrl FS
|
|
*/
|
|
static FILE *open_mem_bw_resctrl(const char *mbm_bw_file)
|
|
{
|
|
FILE *fp;
|
|
|
|
fp = fopen(mbm_bw_file, "r");
|
|
if (!fp)
|
|
ksft_perror("Failed to open total memory bandwidth file");
|
|
|
|
return fp;
|
|
}
|
|
|
|
/*
|
|
* Get MBM Local bytes as reported by resctrl FS
|
|
*/
|
|
static int get_mem_bw_resctrl(FILE *fp, unsigned long *mbm_total)
|
|
{
|
|
if (fscanf(fp, "%lu\n", mbm_total) <= 0) {
|
|
ksft_perror("Could not get MBM local bytes");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static pid_t bm_pid;
|
|
|
|
void ctrlc_handler(int signum, siginfo_t *info, void *ptr)
|
|
{
|
|
/* Only kill child after bm_pid is set after fork() */
|
|
if (bm_pid)
|
|
kill(bm_pid, SIGKILL);
|
|
umount_resctrlfs();
|
|
if (current_test && current_test->cleanup)
|
|
current_test->cleanup();
|
|
ksft_print_msg("Ending\n\n");
|
|
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
/*
|
|
* Register CTRL-C handler for parent, as it has to kill
|
|
* child process before exiting.
|
|
*/
|
|
int signal_handler_register(const struct resctrl_test *test)
|
|
{
|
|
struct sigaction sigact = {};
|
|
int ret = 0;
|
|
|
|
bm_pid = 0;
|
|
|
|
current_test = test;
|
|
sigact.sa_sigaction = ctrlc_handler;
|
|
sigemptyset(&sigact.sa_mask);
|
|
sigact.sa_flags = SA_SIGINFO;
|
|
if (sigaction(SIGINT, &sigact, NULL) ||
|
|
sigaction(SIGTERM, &sigact, NULL) ||
|
|
sigaction(SIGHUP, &sigact, NULL)) {
|
|
ksft_perror("sigaction");
|
|
ret = -1;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reset signal handler to SIG_DFL.
|
|
* Non-Value return because the caller should keep
|
|
* the error code of other path even if sigaction fails.
|
|
*/
|
|
void signal_handler_unregister(void)
|
|
{
|
|
struct sigaction sigact = {};
|
|
|
|
current_test = NULL;
|
|
sigact.sa_handler = SIG_DFL;
|
|
sigemptyset(&sigact.sa_mask);
|
|
if (sigaction(SIGINT, &sigact, NULL) ||
|
|
sigaction(SIGTERM, &sigact, NULL) ||
|
|
sigaction(SIGHUP, &sigact, NULL)) {
|
|
ksft_perror("sigaction");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* print_results_bw: the memory bandwidth results are stored in a file
|
|
* @filename: file that stores the results
|
|
* @bm_pid: child pid that runs benchmark
|
|
* @bw_imc: perf imc counter value
|
|
* @bw_resc: memory bandwidth value
|
|
*
|
|
* Return: 0 on success, < 0 on error.
|
|
*/
|
|
static int print_results_bw(char *filename, pid_t bm_pid, float bw_imc,
|
|
unsigned long bw_resc)
|
|
{
|
|
unsigned long diff = fabs(bw_imc - bw_resc);
|
|
FILE *fp;
|
|
|
|
if (strcmp(filename, "stdio") == 0 || strcmp(filename, "stderr") == 0) {
|
|
printf("Pid: %d \t Mem_BW_iMC: %f \t ", (int)bm_pid, bw_imc);
|
|
printf("Mem_BW_resc: %lu \t Difference: %lu\n", bw_resc, diff);
|
|
} else {
|
|
fp = fopen(filename, "a");
|
|
if (!fp) {
|
|
ksft_perror("Cannot open results file");
|
|
|
|
return -1;
|
|
}
|
|
if (fprintf(fp, "Pid: %d \t Mem_BW_iMC: %f \t Mem_BW_resc: %lu \t Difference: %lu\n",
|
|
(int)bm_pid, bw_imc, bw_resc, diff) <= 0) {
|
|
ksft_print_msg("Could not log results\n");
|
|
fclose(fp);
|
|
|
|
return -1;
|
|
}
|
|
fclose(fp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* measure_read_mem_bw - Measures read memory bandwidth numbers while benchmark runs
|
|
* @uparams: User supplied parameters
|
|
* @param: Parameters passed to resctrl_val()
|
|
* @bm_pid: PID that runs the benchmark
|
|
*
|
|
* Measure memory bandwidth from resctrl and from another source which is
|
|
* perf imc value or could be something else if perf imc event is not
|
|
* available. Compare the two values to validate resctrl value. It takes
|
|
* 1 sec to measure the data.
|
|
* resctrl does not distinguish between read and write operations so
|
|
* its data includes all memory operations.
|
|
*/
|
|
int measure_read_mem_bw(const struct user_params *uparams,
|
|
struct resctrl_val_param *param, pid_t bm_pid)
|
|
{
|
|
unsigned long bw_resc, bw_resc_start, bw_resc_end;
|
|
FILE *mem_bw_fp;
|
|
float bw_imc;
|
|
int ret;
|
|
|
|
mem_bw_fp = open_mem_bw_resctrl(mbm_total_path);
|
|
if (!mem_bw_fp)
|
|
return -1;
|
|
|
|
ret = perf_open_imc_read_mem_bw(uparams->cpu);
|
|
if (ret < 0)
|
|
goto close_fp;
|
|
|
|
ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_start);
|
|
if (ret < 0)
|
|
goto close_imc;
|
|
|
|
rewind(mem_bw_fp);
|
|
|
|
do_imc_read_mem_bw_test();
|
|
|
|
ret = get_mem_bw_resctrl(mem_bw_fp, &bw_resc_end);
|
|
if (ret < 0)
|
|
goto close_imc;
|
|
|
|
ret = get_read_mem_bw_imc(&bw_imc);
|
|
if (ret < 0)
|
|
goto close_imc;
|
|
|
|
perf_close_imc_read_mem_bw();
|
|
fclose(mem_bw_fp);
|
|
|
|
bw_resc = (bw_resc_end - bw_resc_start) / MB;
|
|
|
|
return print_results_bw(param->filename, bm_pid, bw_imc, bw_resc);
|
|
|
|
close_imc:
|
|
perf_close_imc_read_mem_bw();
|
|
close_fp:
|
|
fclose(mem_bw_fp);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* resctrl_val: execute benchmark and measure memory bandwidth on
|
|
* the benchmark
|
|
* @test: test information structure
|
|
* @uparams: user supplied parameters
|
|
* @param: parameters passed to resctrl_val()
|
|
*
|
|
* Return: 0 when the test was run, < 0 on error.
|
|
*/
|
|
int resctrl_val(const struct resctrl_test *test,
|
|
const struct user_params *uparams,
|
|
struct resctrl_val_param *param)
|
|
{
|
|
unsigned char *buf = NULL;
|
|
cpu_set_t old_affinity;
|
|
int domain_id;
|
|
int ret = 0;
|
|
pid_t ppid;
|
|
|
|
if (strcmp(param->filename, "") == 0)
|
|
sprintf(param->filename, "stdio");
|
|
|
|
ret = get_domain_id(test->resource, uparams->cpu, &domain_id);
|
|
if (ret < 0) {
|
|
ksft_print_msg("Could not get domain ID\n");
|
|
return ret;
|
|
}
|
|
|
|
ppid = getpid();
|
|
|
|
/* Taskset test to specified CPU. */
|
|
ret = taskset_benchmark(ppid, uparams->cpu, &old_affinity);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Write test to specified control & monitoring group in resctrl FS. */
|
|
ret = write_bm_pid_to_resctrl(ppid, param->ctrlgrp, param->mongrp);
|
|
if (ret)
|
|
goto reset_affinity;
|
|
|
|
if (param->init) {
|
|
ret = param->init(param, domain_id);
|
|
if (ret)
|
|
goto reset_affinity;
|
|
}
|
|
|
|
/*
|
|
* If not running user provided benchmark, run the default
|
|
* "fill_buf". First phase of "fill_buf" is to prepare the
|
|
* buffer that the benchmark will operate on. No measurements
|
|
* are needed during this phase and prepared memory will be
|
|
* passed to next part of benchmark via copy-on-write thus
|
|
* no impact on the benchmark that relies on reading from
|
|
* memory only.
|
|
*/
|
|
if (param->fill_buf) {
|
|
buf = alloc_buffer(param->fill_buf->buf_size,
|
|
param->fill_buf->memflush);
|
|
if (!buf) {
|
|
ret = -ENOMEM;
|
|
goto reset_affinity;
|
|
}
|
|
}
|
|
|
|
fflush(stdout);
|
|
bm_pid = fork();
|
|
if (bm_pid == -1) {
|
|
ret = -errno;
|
|
ksft_perror("Unable to fork");
|
|
goto free_buf;
|
|
}
|
|
|
|
/*
|
|
* What needs to be measured runs in separate process until
|
|
* terminated.
|
|
*/
|
|
if (bm_pid == 0) {
|
|
if (param->fill_buf)
|
|
fill_cache_read(buf, param->fill_buf->buf_size, false);
|
|
else if (uparams->benchmark_cmd[0])
|
|
execvp(uparams->benchmark_cmd[0], (char **)uparams->benchmark_cmd);
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
ksft_print_msg("Benchmark PID: %d\n", (int)bm_pid);
|
|
|
|
/* Give benchmark enough time to fully run. */
|
|
sleep(1);
|
|
|
|
/* Test runs until the callback setup() tells the test to stop. */
|
|
while (1) {
|
|
ret = param->setup(test, uparams, param);
|
|
if (ret == END_OF_TESTS) {
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (ret < 0)
|
|
break;
|
|
|
|
ret = param->measure(uparams, param, bm_pid);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
kill(bm_pid, SIGKILL);
|
|
free_buf:
|
|
free(buf);
|
|
reset_affinity:
|
|
taskset_restore(ppid, &old_affinity);
|
|
return ret;
|
|
}
|