353 lines
8.6 KiB
C
353 lines
8.6 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (c) 2014, The Linux Foundation. All rights reserved.
|
||
|
*/
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/mm.h>
|
||
|
#include <linux/module.h>
|
||
|
#include <linux/mem_encrypt.h>
|
||
|
#include <linux/sched.h>
|
||
|
#include <linux/vmalloc.h>
|
||
|
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/pgtable-prot.h>
|
||
|
#include <asm/set_memory.h>
|
||
|
#include <asm/tlbflush.h>
|
||
|
#include <asm/kfence.h>
|
||
|
|
||
|
struct page_change_data {
|
||
|
pgprot_t set_mask;
|
||
|
pgprot_t clear_mask;
|
||
|
};
|
||
|
|
||
|
bool rodata_full __ro_after_init = IS_ENABLED(CONFIG_RODATA_FULL_DEFAULT_ENABLED);
|
||
|
|
||
|
bool can_set_direct_map(void)
|
||
|
{
|
||
|
/*
|
||
|
* rodata_full, DEBUG_PAGEALLOC and a Realm guest all require linear
|
||
|
* map to be mapped at page granularity, so that it is possible to
|
||
|
* protect/unprotect single pages.
|
||
|
*
|
||
|
* KFENCE pool requires page-granular mapping if initialized late.
|
||
|
*
|
||
|
* Realms need to make pages shared/protected at page granularity.
|
||
|
*/
|
||
|
return rodata_full || debug_pagealloc_enabled() ||
|
||
|
arm64_kfence_can_set_direct_map() || is_realm_world();
|
||
|
}
|
||
|
|
||
|
static int change_page_range(pte_t *ptep, unsigned long addr, void *data)
|
||
|
{
|
||
|
struct page_change_data *cdata = data;
|
||
|
pte_t pte = __ptep_get(ptep);
|
||
|
|
||
|
pte = clear_pte_bit(pte, cdata->clear_mask);
|
||
|
pte = set_pte_bit(pte, cdata->set_mask);
|
||
|
|
||
|
__set_pte(ptep, pte);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This function assumes that the range is mapped with PAGE_SIZE pages.
|
||
|
*/
|
||
|
static int __change_memory_common(unsigned long start, unsigned long size,
|
||
|
pgprot_t set_mask, pgprot_t clear_mask)
|
||
|
{
|
||
|
struct page_change_data data;
|
||
|
int ret;
|
||
|
|
||
|
data.set_mask = set_mask;
|
||
|
data.clear_mask = clear_mask;
|
||
|
|
||
|
ret = apply_to_page_range(&init_mm, start, size, change_page_range,
|
||
|
&data);
|
||
|
|
||
|
/*
|
||
|
* If the memory is being made valid without changing any other bits
|
||
|
* then a TLBI isn't required as a non-valid entry cannot be cached in
|
||
|
* the TLB.
|
||
|
*/
|
||
|
if (pgprot_val(set_mask) != PTE_VALID || pgprot_val(clear_mask))
|
||
|
flush_tlb_kernel_range(start, start + size);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int change_memory_common(unsigned long addr, int numpages,
|
||
|
pgprot_t set_mask, pgprot_t clear_mask)
|
||
|
{
|
||
|
unsigned long start = addr;
|
||
|
unsigned long size = PAGE_SIZE * numpages;
|
||
|
unsigned long end = start + size;
|
||
|
struct vm_struct *area;
|
||
|
int i;
|
||
|
|
||
|
if (!PAGE_ALIGNED(addr)) {
|
||
|
start &= PAGE_MASK;
|
||
|
end = start + size;
|
||
|
WARN_ON_ONCE(1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Kernel VA mappings are always live, and splitting live section
|
||
|
* mappings into page mappings may cause TLB conflicts. This means
|
||
|
* we have to ensure that changing the permission bits of the range
|
||
|
* we are operating on does not result in such splitting.
|
||
|
*
|
||
|
* Let's restrict ourselves to mappings created by vmalloc (or vmap).
|
||
|
* Those are guaranteed to consist entirely of page mappings, and
|
||
|
* splitting is never needed.
|
||
|
*
|
||
|
* So check whether the [addr, addr + size) interval is entirely
|
||
|
* covered by precisely one VM area that has the VM_ALLOC flag set.
|
||
|
*/
|
||
|
area = find_vm_area((void *)addr);
|
||
|
if (!area ||
|
||
|
end > (unsigned long)kasan_reset_tag(area->addr) + area->size ||
|
||
|
!(area->flags & VM_ALLOC))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (!numpages)
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* If we are manipulating read-only permissions, apply the same
|
||
|
* change to the linear mapping of the pages that back this VM area.
|
||
|
*/
|
||
|
if (rodata_full && (pgprot_val(set_mask) == PTE_RDONLY ||
|
||
|
pgprot_val(clear_mask) == PTE_RDONLY)) {
|
||
|
for (i = 0; i < area->nr_pages; i++) {
|
||
|
__change_memory_common((u64)page_address(area->pages[i]),
|
||
|
PAGE_SIZE, set_mask, clear_mask);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Get rid of potentially aliasing lazily unmapped vm areas that may
|
||
|
* have permissions set that deviate from the ones we are setting here.
|
||
|
*/
|
||
|
vm_unmap_aliases();
|
||
|
|
||
|
return __change_memory_common(start, size, set_mask, clear_mask);
|
||
|
}
|
||
|
|
||
|
int set_memory_ro(unsigned long addr, int numpages)
|
||
|
{
|
||
|
return change_memory_common(addr, numpages,
|
||
|
__pgprot(PTE_RDONLY),
|
||
|
__pgprot(PTE_WRITE));
|
||
|
}
|
||
|
|
||
|
int set_memory_rw(unsigned long addr, int numpages)
|
||
|
{
|
||
|
return change_memory_common(addr, numpages,
|
||
|
__pgprot(PTE_WRITE),
|
||
|
__pgprot(PTE_RDONLY));
|
||
|
}
|
||
|
|
||
|
int set_memory_nx(unsigned long addr, int numpages)
|
||
|
{
|
||
|
return change_memory_common(addr, numpages,
|
||
|
__pgprot(PTE_PXN),
|
||
|
__pgprot(PTE_MAYBE_GP));
|
||
|
}
|
||
|
|
||
|
int set_memory_x(unsigned long addr, int numpages)
|
||
|
{
|
||
|
return change_memory_common(addr, numpages,
|
||
|
__pgprot(PTE_MAYBE_GP),
|
||
|
__pgprot(PTE_PXN));
|
||
|
}
|
||
|
|
||
|
int set_memory_valid(unsigned long addr, int numpages, int enable)
|
||
|
{
|
||
|
if (enable)
|
||
|
return __change_memory_common(addr, PAGE_SIZE * numpages,
|
||
|
__pgprot(PTE_VALID),
|
||
|
__pgprot(0));
|
||
|
else
|
||
|
return __change_memory_common(addr, PAGE_SIZE * numpages,
|
||
|
__pgprot(0),
|
||
|
__pgprot(PTE_VALID));
|
||
|
}
|
||
|
|
||
|
int set_direct_map_invalid_noflush(struct page *page)
|
||
|
{
|
||
|
struct page_change_data data = {
|
||
|
.set_mask = __pgprot(0),
|
||
|
.clear_mask = __pgprot(PTE_VALID),
|
||
|
};
|
||
|
|
||
|
if (!can_set_direct_map())
|
||
|
return 0;
|
||
|
|
||
|
return apply_to_page_range(&init_mm,
|
||
|
(unsigned long)page_address(page),
|
||
|
PAGE_SIZE, change_page_range, &data);
|
||
|
}
|
||
|
|
||
|
int set_direct_map_default_noflush(struct page *page)
|
||
|
{
|
||
|
struct page_change_data data = {
|
||
|
.set_mask = __pgprot(PTE_VALID | PTE_WRITE),
|
||
|
.clear_mask = __pgprot(PTE_RDONLY),
|
||
|
};
|
||
|
|
||
|
if (!can_set_direct_map())
|
||
|
return 0;
|
||
|
|
||
|
return apply_to_page_range(&init_mm,
|
||
|
(unsigned long)page_address(page),
|
||
|
PAGE_SIZE, change_page_range, &data);
|
||
|
}
|
||
|
|
||
|
static int __set_memory_enc_dec(unsigned long addr,
|
||
|
int numpages,
|
||
|
bool encrypt)
|
||
|
{
|
||
|
unsigned long set_prot = 0, clear_prot = 0;
|
||
|
phys_addr_t start, end;
|
||
|
int ret;
|
||
|
|
||
|
if (!is_realm_world())
|
||
|
return 0;
|
||
|
|
||
|
if (!__is_lm_address(addr))
|
||
|
return -EINVAL;
|
||
|
|
||
|
start = __virt_to_phys(addr);
|
||
|
end = start + numpages * PAGE_SIZE;
|
||
|
|
||
|
if (encrypt)
|
||
|
clear_prot = PROT_NS_SHARED;
|
||
|
else
|
||
|
set_prot = PROT_NS_SHARED;
|
||
|
|
||
|
/*
|
||
|
* Break the mapping before we make any changes to avoid stale TLB
|
||
|
* entries or Synchronous External Aborts caused by RIPAS_EMPTY
|
||
|
*/
|
||
|
ret = __change_memory_common(addr, PAGE_SIZE * numpages,
|
||
|
__pgprot(set_prot),
|
||
|
__pgprot(clear_prot | PTE_VALID));
|
||
|
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
if (encrypt)
|
||
|
ret = rsi_set_memory_range_protected(start, end);
|
||
|
else
|
||
|
ret = rsi_set_memory_range_shared(start, end);
|
||
|
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
return __change_memory_common(addr, PAGE_SIZE * numpages,
|
||
|
__pgprot(PTE_VALID),
|
||
|
__pgprot(0));
|
||
|
}
|
||
|
|
||
|
static int realm_set_memory_encrypted(unsigned long addr, int numpages)
|
||
|
{
|
||
|
int ret = __set_memory_enc_dec(addr, numpages, true);
|
||
|
|
||
|
/*
|
||
|
* If the request to change state fails, then the only sensible cause
|
||
|
* of action for the caller is to leak the memory
|
||
|
*/
|
||
|
WARN(ret, "Failed to encrypt memory, %d pages will be leaked",
|
||
|
numpages);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int realm_set_memory_decrypted(unsigned long addr, int numpages)
|
||
|
{
|
||
|
int ret = __set_memory_enc_dec(addr, numpages, false);
|
||
|
|
||
|
WARN(ret, "Failed to decrypt memory, %d pages will be leaked",
|
||
|
numpages);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static const struct arm64_mem_crypt_ops realm_crypt_ops = {
|
||
|
.encrypt = realm_set_memory_encrypted,
|
||
|
.decrypt = realm_set_memory_decrypted,
|
||
|
};
|
||
|
|
||
|
int realm_register_memory_enc_ops(void)
|
||
|
{
|
||
|
return arm64_mem_crypt_ops_register(&realm_crypt_ops);
|
||
|
}
|
||
|
|
||
|
int set_direct_map_valid_noflush(struct page *page, unsigned nr, bool valid)
|
||
|
{
|
||
|
unsigned long addr = (unsigned long)page_address(page);
|
||
|
|
||
|
if (!can_set_direct_map())
|
||
|
return 0;
|
||
|
|
||
|
return set_memory_valid(addr, nr, valid);
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
||
|
/*
|
||
|
* This is - apart from the return value - doing the same
|
||
|
* thing as the new set_direct_map_valid_noflush() function.
|
||
|
*
|
||
|
* Unify? Explain the conceptual differences?
|
||
|
*/
|
||
|
void __kernel_map_pages(struct page *page, int numpages, int enable)
|
||
|
{
|
||
|
if (!can_set_direct_map())
|
||
|
return;
|
||
|
|
||
|
set_memory_valid((unsigned long)page_address(page), numpages, enable);
|
||
|
}
|
||
|
#endif /* CONFIG_DEBUG_PAGEALLOC */
|
||
|
|
||
|
/*
|
||
|
* This function is used to determine if a linear map page has been marked as
|
||
|
* not-valid. Walk the page table and check the PTE_VALID bit.
|
||
|
*
|
||
|
* Because this is only called on the kernel linear map, p?d_sect() implies
|
||
|
* p?d_present(). When debug_pagealloc is enabled, sections mappings are
|
||
|
* disabled.
|
||
|
*/
|
||
|
bool kernel_page_present(struct page *page)
|
||
|
{
|
||
|
pgd_t *pgdp;
|
||
|
p4d_t *p4dp;
|
||
|
pud_t *pudp, pud;
|
||
|
pmd_t *pmdp, pmd;
|
||
|
pte_t *ptep;
|
||
|
unsigned long addr = (unsigned long)page_address(page);
|
||
|
|
||
|
pgdp = pgd_offset_k(addr);
|
||
|
if (pgd_none(READ_ONCE(*pgdp)))
|
||
|
return false;
|
||
|
|
||
|
p4dp = p4d_offset(pgdp, addr);
|
||
|
if (p4d_none(READ_ONCE(*p4dp)))
|
||
|
return false;
|
||
|
|
||
|
pudp = pud_offset(p4dp, addr);
|
||
|
pud = READ_ONCE(*pudp);
|
||
|
if (pud_none(pud))
|
||
|
return false;
|
||
|
if (pud_sect(pud))
|
||
|
return true;
|
||
|
|
||
|
pmdp = pmd_offset(pudp, addr);
|
||
|
pmd = READ_ONCE(*pmdp);
|
||
|
if (pmd_none(pmd))
|
||
|
return false;
|
||
|
if (pmd_sect(pmd))
|
||
|
return true;
|
||
|
|
||
|
ptep = pte_offset_kernel(pmdp, addr);
|
||
|
return pte_valid(__ptep_get(ptep));
|
||
|
}
|