JustOS/linux-6.13/drivers/iio/imu/smi240.c

622 lines
15 KiB
C
Raw Normal View History

2025-01-24 14:00:19 +00:00
// SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
/*
* Copyright (c) 2024 Robert Bosch GmbH.
*/
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/regmap.h>
#include <linux/spi/spi.h>
#include <linux/unaligned.h>
#include <linux/units.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#define SMI240_CHIP_ID 0x0024
#define SMI240_SOFT_CONFIG_EOC_MASK BIT(0)
#define SMI240_SOFT_CONFIG_GYR_BW_MASK BIT(1)
#define SMI240_SOFT_CONFIG_ACC_BW_MASK BIT(2)
#define SMI240_SOFT_CONFIG_BITE_AUTO_MASK BIT(3)
#define SMI240_SOFT_CONFIG_BITE_REP_MASK GENMASK(6, 4)
#define SMI240_CHIP_ID_REG 0x00
#define SMI240_SOFT_CONFIG_REG 0x0A
#define SMI240_TEMP_CUR_REG 0x10
#define SMI240_ACCEL_X_CUR_REG 0x11
#define SMI240_GYRO_X_CUR_REG 0x14
#define SMI240_DATA_CAP_FIRST_REG 0x17
#define SMI240_CMD_REG 0x2F
#define SMI240_SOFT_RESET_CMD 0xB6
#define SMI240_BITE_SEQUENCE_DELAY_US 140000
#define SMI240_FILTER_FLUSH_DELAY_US 60000
#define SMI240_DIGITAL_STARTUP_DELAY_US 120000
#define SMI240_MECH_STARTUP_DELAY_US 100000
#define SMI240_BUS_ID 0x00
#define SMI240_CRC_INIT 0x05
#define SMI240_CRC_POLY 0x0B
#define SMI240_CRC_MASK GENMASK(2, 0)
#define SMI240_READ_SD_BIT_MASK BIT(31)
#define SMI240_READ_DATA_MASK GENMASK(19, 4)
#define SMI240_READ_CS_BIT_MASK BIT(3)
#define SMI240_WRITE_BUS_ID_MASK GENMASK(31, 30)
#define SMI240_WRITE_ADDR_MASK GENMASK(29, 22)
#define SMI240_WRITE_BIT_MASK BIT(21)
#define SMI240_WRITE_CAP_BIT_MASK BIT(20)
#define SMI240_WRITE_DATA_MASK GENMASK(18, 3)
/* T°C = (temp / 256) + 25 */
#define SMI240_TEMP_OFFSET 6400 /* 25 * 256 */
#define SMI240_TEMP_SCALE 3906250 /* (1 / 256) * 1e9 */
#define SMI240_ACCEL_SCALE 500 /* (1 / 2000) * 1e6 */
#define SMI240_GYRO_SCALE 10000 /* (1 / 100) * 1e6 */
#define SMI240_LOW_BANDWIDTH_HZ 50
#define SMI240_HIGH_BANDWIDTH_HZ 400
#define SMI240_BUILT_IN_SELF_TEST_COUNT 3
#define SMI240_DATA_CHANNEL(_type, _axis, _index) { \
.type = _type, \
.modified = 1, \
.channel2 = IIO_MOD_##_axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = \
BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.info_mask_shared_by_type_available = \
BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
#define SMI240_TEMP_CHANNEL(_index) { \
.type = IIO_TEMP, \
.modified = 1, \
.channel2 = IIO_MOD_TEMP_OBJECT, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_OFFSET) | \
BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = _index, \
.scan_type = { \
.sign = 's', \
.realbits = 16, \
.storagebits = 16, \
.endianness = IIO_CPU, \
}, \
}
enum capture_mode { SMI240_CAPTURE_OFF = 0, SMI240_CAPTURE_ON = 1 };
struct smi240_data {
struct regmap *regmap;
u16 accel_filter_freq;
u16 anglvel_filter_freq;
u8 built_in_self_test_count;
enum capture_mode capture;
/*
* Ensure natural alignment for timestamp if present.
* Channel size: 2 bytes.
* Max length needed: 2 * 3 channels + temp channel + 2 bytes padding + 8 byte ts.
* If fewer channels are enabled, less space may be needed, as
* long as the timestamp is still aligned to 8 bytes.
*/
s16 buf[12] __aligned(8);
__be32 spi_buf __aligned(IIO_DMA_MINALIGN);
};
enum {
SMI240_TEMP_OBJECT,
SMI240_SCAN_ACCEL_X,
SMI240_SCAN_ACCEL_Y,
SMI240_SCAN_ACCEL_Z,
SMI240_SCAN_GYRO_X,
SMI240_SCAN_GYRO_Y,
SMI240_SCAN_GYRO_Z,
SMI240_SCAN_TIMESTAMP,
};
static const struct iio_chan_spec smi240_channels[] = {
SMI240_TEMP_CHANNEL(SMI240_TEMP_OBJECT),
SMI240_DATA_CHANNEL(IIO_ACCEL, X, SMI240_SCAN_ACCEL_X),
SMI240_DATA_CHANNEL(IIO_ACCEL, Y, SMI240_SCAN_ACCEL_Y),
SMI240_DATA_CHANNEL(IIO_ACCEL, Z, SMI240_SCAN_ACCEL_Z),
SMI240_DATA_CHANNEL(IIO_ANGL_VEL, X, SMI240_SCAN_GYRO_X),
SMI240_DATA_CHANNEL(IIO_ANGL_VEL, Y, SMI240_SCAN_GYRO_Y),
SMI240_DATA_CHANNEL(IIO_ANGL_VEL, Z, SMI240_SCAN_GYRO_Z),
IIO_CHAN_SOFT_TIMESTAMP(SMI240_SCAN_TIMESTAMP),
};
static const int smi240_low_pass_freqs[] = { SMI240_LOW_BANDWIDTH_HZ,
SMI240_HIGH_BANDWIDTH_HZ };
static u8 smi240_crc3(u32 data, u8 init, u8 poly)
{
u8 crc = init;
u8 do_xor;
s8 i = 31;
do {
do_xor = crc & 0x04;
crc <<= 1;
crc |= 0x01 & (data >> i);
if (do_xor)
crc ^= poly;
crc &= SMI240_CRC_MASK;
} while (--i >= 0);
return crc;
}
static bool smi240_sensor_data_is_valid(u32 data)
{
if (smi240_crc3(data, SMI240_CRC_INIT, SMI240_CRC_POLY) != 0)
return false;
if (FIELD_GET(SMI240_READ_SD_BIT_MASK, data) &
FIELD_GET(SMI240_READ_CS_BIT_MASK, data))
return false;
return true;
}
static int smi240_regmap_spi_read(void *context, const void *reg_buf,
size_t reg_size, void *val_buf,
size_t val_size)
{
int ret;
u32 request, response;
u16 *val = val_buf;
struct spi_device *spi = context;
struct iio_dev *indio_dev = dev_get_drvdata(&spi->dev);
struct smi240_data *iio_priv_data = iio_priv(indio_dev);
if (reg_size != 1 || val_size != 2)
return -EINVAL;
request = FIELD_PREP(SMI240_WRITE_BUS_ID_MASK, SMI240_BUS_ID);
request |= FIELD_PREP(SMI240_WRITE_CAP_BIT_MASK, iio_priv_data->capture);
request |= FIELD_PREP(SMI240_WRITE_ADDR_MASK, *(u8 *)reg_buf);
request |= smi240_crc3(request, SMI240_CRC_INIT, SMI240_CRC_POLY);
iio_priv_data->spi_buf = cpu_to_be32(request);
/*
* SMI240 module consists of a 32Bit Out Of Frame (OOF)
* SPI protocol, where the slave interface responds to
* the Master request in the next frame.
* CS signal must toggle (> 700 ns) between the frames.
*/
ret = spi_write(spi, &iio_priv_data->spi_buf, sizeof(request));
if (ret)
return ret;
ret = spi_read(spi, &iio_priv_data->spi_buf, sizeof(response));
if (ret)
return ret;
response = be32_to_cpu(iio_priv_data->spi_buf);
if (!smi240_sensor_data_is_valid(response))
return -EIO;
*val = FIELD_GET(SMI240_READ_DATA_MASK, response);
return 0;
}
static int smi240_regmap_spi_write(void *context, const void *data,
size_t count)
{
u8 reg_addr;
u16 reg_data;
u32 request;
const u8 *data_ptr = data;
struct spi_device *spi = context;
struct iio_dev *indio_dev = dev_get_drvdata(&spi->dev);
struct smi240_data *iio_priv_data = iio_priv(indio_dev);
if (count < 2)
return -EINVAL;
reg_addr = data_ptr[0];
memcpy(&reg_data, &data_ptr[1], sizeof(reg_data));
request = FIELD_PREP(SMI240_WRITE_BUS_ID_MASK, SMI240_BUS_ID);
request |= FIELD_PREP(SMI240_WRITE_BIT_MASK, 1);
request |= FIELD_PREP(SMI240_WRITE_ADDR_MASK, reg_addr);
request |= FIELD_PREP(SMI240_WRITE_DATA_MASK, reg_data);
request |= smi240_crc3(request, SMI240_CRC_INIT, SMI240_CRC_POLY);
iio_priv_data->spi_buf = cpu_to_be32(request);
return spi_write(spi, &iio_priv_data->spi_buf, sizeof(request));
}
static const struct regmap_bus smi240_regmap_bus = {
.read = smi240_regmap_spi_read,
.write = smi240_regmap_spi_write,
};
static const struct regmap_config smi240_regmap_config = {
.reg_bits = 8,
.val_bits = 16,
.val_format_endian = REGMAP_ENDIAN_NATIVE,
};
static int smi240_soft_reset(struct smi240_data *data)
{
int ret;
ret = regmap_write(data->regmap, SMI240_CMD_REG, SMI240_SOFT_RESET_CMD);
if (ret)
return ret;
fsleep(SMI240_DIGITAL_STARTUP_DELAY_US);
return 0;
}
static int smi240_soft_config(struct smi240_data *data)
{
int ret;
u8 acc_bw, gyr_bw;
u16 request;
switch (data->accel_filter_freq) {
case SMI240_LOW_BANDWIDTH_HZ:
acc_bw = 0x1;
break;
case SMI240_HIGH_BANDWIDTH_HZ:
acc_bw = 0x0;
break;
default:
return -EINVAL;
}
switch (data->anglvel_filter_freq) {
case SMI240_LOW_BANDWIDTH_HZ:
gyr_bw = 0x1;
break;
case SMI240_HIGH_BANDWIDTH_HZ:
gyr_bw = 0x0;
break;
default:
return -EINVAL;
}
request = FIELD_PREP(SMI240_SOFT_CONFIG_EOC_MASK, 1);
request |= FIELD_PREP(SMI240_SOFT_CONFIG_GYR_BW_MASK, gyr_bw);
request |= FIELD_PREP(SMI240_SOFT_CONFIG_ACC_BW_MASK, acc_bw);
request |= FIELD_PREP(SMI240_SOFT_CONFIG_BITE_AUTO_MASK, 1);
request |= FIELD_PREP(SMI240_SOFT_CONFIG_BITE_REP_MASK,
data->built_in_self_test_count - 1);
ret = regmap_write(data->regmap, SMI240_SOFT_CONFIG_REG, request);
if (ret)
return ret;
fsleep(SMI240_MECH_STARTUP_DELAY_US +
data->built_in_self_test_count * SMI240_BITE_SEQUENCE_DELAY_US +
SMI240_FILTER_FLUSH_DELAY_US);
return 0;
}
static int smi240_get_low_pass_filter_freq(struct smi240_data *data,
int chan_type, int *val)
{
switch (chan_type) {
case IIO_ACCEL:
*val = data->accel_filter_freq;
return 0;
case IIO_ANGL_VEL:
*val = data->anglvel_filter_freq;
return 0;
default:
return -EINVAL;
}
}
static int smi240_get_data(struct smi240_data *data, int chan_type, int axis,
int *val)
{
u8 reg;
int ret, sample;
switch (chan_type) {
case IIO_TEMP:
reg = SMI240_TEMP_CUR_REG;
break;
case IIO_ACCEL:
reg = SMI240_ACCEL_X_CUR_REG + (axis - IIO_MOD_X);
break;
case IIO_ANGL_VEL:
reg = SMI240_GYRO_X_CUR_REG + (axis - IIO_MOD_X);
break;
default:
return -EINVAL;
}
ret = regmap_read(data->regmap, reg, &sample);
if (ret)
return ret;
*val = sign_extend32(sample, 15);
return 0;
}
static irqreturn_t smi240_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct smi240_data *data = iio_priv(indio_dev);
int base = SMI240_DATA_CAP_FIRST_REG, i = 0;
int ret, chan, sample;
data->capture = SMI240_CAPTURE_ON;
iio_for_each_active_channel(indio_dev, chan) {
ret = regmap_read(data->regmap, base + chan, &sample);
data->capture = SMI240_CAPTURE_OFF;
if (ret)
goto out;
data->buf[i++] = sample;
}
iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
out:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int smi240_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, const int **vals,
int *type, int *length, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
*vals = smi240_low_pass_freqs;
*length = ARRAY_SIZE(smi240_low_pass_freqs);
*type = IIO_VAL_INT;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static int smi240_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val,
int *val2, long mask)
{
int ret;
struct smi240_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = smi240_get_data(data, chan->type, chan->channel2, val);
iio_device_release_direct_mode(indio_dev);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
ret = smi240_get_low_pass_filter_freq(data, chan->type, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
*val = SMI240_TEMP_SCALE / GIGA;
*val2 = SMI240_TEMP_SCALE % GIGA;
return IIO_VAL_INT_PLUS_NANO;
case IIO_ACCEL:
*val = 0;
*val2 = SMI240_ACCEL_SCALE;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_ANGL_VEL:
*val = 0;
*val2 = SMI240_GYRO_SCALE;
return IIO_VAL_INT_PLUS_MICRO;
default:
return -EINVAL;
}
case IIO_CHAN_INFO_OFFSET:
if (chan->type == IIO_TEMP) {
*val = SMI240_TEMP_OFFSET;
return IIO_VAL_INT;
} else {
return -EINVAL;
}
default:
return -EINVAL;
}
}
static int smi240_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int val, int val2,
long mask)
{
int ret, i;
struct smi240_data *data = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
for (i = 0; i < ARRAY_SIZE(smi240_low_pass_freqs); i++) {
if (val == smi240_low_pass_freqs[i])
break;
}
if (i == ARRAY_SIZE(smi240_low_pass_freqs))
return -EINVAL;
switch (chan->type) {
case IIO_ACCEL:
data->accel_filter_freq = val;
break;
case IIO_ANGL_VEL:
data->anglvel_filter_freq = val;
break;
default:
return -EINVAL;
}
break;
default:
return -EINVAL;
}
/* Write access to soft config is locked until hard/soft reset */
ret = smi240_soft_reset(data);
if (ret)
return ret;
return smi240_soft_config(data);
}
static int smi240_write_raw_get_fmt(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, long info)
{
switch (info) {
case IIO_CHAN_INFO_SCALE:
switch (chan->type) {
case IIO_TEMP:
return IIO_VAL_INT_PLUS_NANO;
default:
return IIO_VAL_INT_PLUS_MICRO;
}
default:
return IIO_VAL_INT_PLUS_MICRO;
}
}
static int smi240_init(struct smi240_data *data)
{
int ret;
data->accel_filter_freq = SMI240_HIGH_BANDWIDTH_HZ;
data->anglvel_filter_freq = SMI240_HIGH_BANDWIDTH_HZ;
data->built_in_self_test_count = SMI240_BUILT_IN_SELF_TEST_COUNT;
ret = smi240_soft_reset(data);
if (ret)
return ret;
return smi240_soft_config(data);
}
static const struct iio_info smi240_info = {
.read_avail = smi240_read_avail,
.read_raw = smi240_read_raw,
.write_raw = smi240_write_raw,
.write_raw_get_fmt = smi240_write_raw_get_fmt,
};
static int smi240_probe(struct spi_device *spi)
{
struct device *dev = &spi->dev;
struct iio_dev *indio_dev;
struct regmap *regmap;
struct smi240_data *data;
int ret, response;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
regmap = devm_regmap_init(dev, &smi240_regmap_bus, dev,
&smi240_regmap_config);
if (IS_ERR(regmap))
return dev_err_probe(dev, PTR_ERR(regmap),
"Failed to initialize SPI Regmap\n");
data = iio_priv(indio_dev);
dev_set_drvdata(dev, indio_dev);
data->regmap = regmap;
data->capture = SMI240_CAPTURE_OFF;
ret = regmap_read(data->regmap, SMI240_CHIP_ID_REG, &response);
if (ret)
return dev_err_probe(dev, ret, "Read chip id failed\n");
if (response != SMI240_CHIP_ID)
dev_info(dev, "Unknown chip id: 0x%04x\n", response);
ret = smi240_init(data);
if (ret)
return dev_err_probe(dev, ret,
"Device initialization failed\n");
indio_dev->channels = smi240_channels;
indio_dev->num_channels = ARRAY_SIZE(smi240_channels);
indio_dev->name = "smi240";
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &smi240_info;
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
iio_pollfunc_store_time,
smi240_trigger_handler, NULL);
if (ret)
return dev_err_probe(dev, ret,
"Setup triggered buffer failed\n");
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return dev_err_probe(dev, ret, "Register IIO device failed\n");
return 0;
}
static const struct spi_device_id smi240_spi_id[] = {
{ "smi240" },
{ }
};
MODULE_DEVICE_TABLE(spi, smi240_spi_id);
static const struct of_device_id smi240_of_match[] = {
{ .compatible = "bosch,smi240" },
{ }
};
MODULE_DEVICE_TABLE(of, smi240_of_match);
static struct spi_driver smi240_spi_driver = {
.probe = smi240_probe,
.id_table = smi240_spi_id,
.driver = {
.of_match_table = smi240_of_match,
.name = "smi240",
},
};
module_spi_driver(smi240_spi_driver);
MODULE_AUTHOR("Markus Lochmann <markus.lochmann@de.bosch.com>");
MODULE_AUTHOR("Stefan Gutmann <stefan.gutmann@de.bosch.com>");
MODULE_DESCRIPTION("Bosch SMI240 SPI driver");
MODULE_LICENSE("Dual BSD/GPL");