JustOS/linux-6.13/drivers/gpu/drm/xe/xe_guc_capture.c

2023 lines
62 KiB
C
Raw Normal View History

2025-01-24 14:00:19 +00:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021-2024 Intel Corporation
*/
#include <linux/types.h>
#include <drm/drm_managed.h>
#include <drm/drm_print.h>
#include "abi/guc_actions_abi.h"
#include "abi/guc_capture_abi.h"
#include "abi/guc_log_abi.h"
#include "regs/xe_engine_regs.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_guc_regs.h"
#include "regs/xe_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_exec_queue_types.h"
#include "xe_gt.h"
#include "xe_gt_mcr.h"
#include "xe_gt_printk.h"
#include "xe_guc.h"
#include "xe_guc_ads.h"
#include "xe_guc_capture.h"
#include "xe_guc_capture_types.h"
#include "xe_guc_ct.h"
#include "xe_guc_exec_queue_types.h"
#include "xe_guc_log.h"
#include "xe_guc_submit_types.h"
#include "xe_guc_submit.h"
#include "xe_hw_engine_types.h"
#include "xe_hw_engine.h"
#include "xe_lrc.h"
#include "xe_macros.h"
#include "xe_map.h"
#include "xe_mmio.h"
#include "xe_sched_job.h"
/*
* struct __guc_capture_bufstate
*
* Book-keeping structure used to track read and write pointers
* as we extract error capture data from the GuC-log-buffer's
* error-capture region as a stream of dwords.
*/
struct __guc_capture_bufstate {
u32 size;
u32 data_offset;
u32 rd;
u32 wr;
};
/*
* struct __guc_capture_parsed_output - extracted error capture node
*
* A single unit of extracted error-capture output data grouped together
* at an engine-instance level. We keep these nodes in a linked list.
* See cachelist and outlist below.
*/
struct __guc_capture_parsed_output {
/*
* A single set of 3 capture lists: a global-list
* an engine-class-list and an engine-instance list.
* outlist in __guc_capture_parsed_output will keep
* a linked list of these nodes that will eventually
* be detached from outlist and attached into to
* xe_codedump in response to a context reset
*/
struct list_head link;
bool is_partial;
u32 eng_class;
u32 eng_inst;
u32 guc_id;
u32 lrca;
u32 type;
bool locked;
enum xe_hw_engine_snapshot_source_id source;
struct gcap_reg_list_info {
u32 vfid;
u32 num_regs;
struct guc_mmio_reg *regs;
} reginfo[GUC_STATE_CAPTURE_TYPE_MAX];
#define GCAP_PARSED_REGLIST_INDEX_GLOBAL BIT(GUC_STATE_CAPTURE_TYPE_GLOBAL)
#define GCAP_PARSED_REGLIST_INDEX_ENGCLASS BIT(GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS)
};
/*
* Define all device tables of GuC error capture register lists
* NOTE:
* For engine-registers, GuC only needs the register offsets
* from the engine-mmio-base
*
* 64 bit registers need 2 entries for low 32 bit register and high 32 bit
* register, for example:
* Register data_type flags mask Register name
* { XXX_REG_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL},
* { XXX_REG_HI(0), REG_64BIT_HI_DW,, 0, 0, "XXX_REG"},
* 1. data_type: Indicate is hi/low 32 bit for a 64 bit register
* A 64 bit register define requires 2 consecutive entries,
* with low dword first and hi dword the second.
* 2. Register name: null for incompleted define
* 3. Incorrect order will trigger XE_WARN.
*/
#define COMMON_XELP_BASE_GLOBAL \
{ FORCEWAKE_GT, REG_32BIT, 0, 0, "FORCEWAKE_GT"}
#define COMMON_BASE_ENGINE_INSTANCE \
{ RING_HWSTAM(0), REG_32BIT, 0, 0, "HWSTAM"}, \
{ RING_HWS_PGA(0), REG_32BIT, 0, 0, "RING_HWS_PGA"}, \
{ RING_HEAD(0), REG_32BIT, 0, 0, "RING_HEAD"}, \
{ RING_TAIL(0), REG_32BIT, 0, 0, "RING_TAIL"}, \
{ RING_CTL(0), REG_32BIT, 0, 0, "RING_CTL"}, \
{ RING_MI_MODE(0), REG_32BIT, 0, 0, "RING_MI_MODE"}, \
{ RING_MODE(0), REG_32BIT, 0, 0, "RING_MODE"}, \
{ RING_ESR(0), REG_32BIT, 0, 0, "RING_ESR"}, \
{ RING_EMR(0), REG_32BIT, 0, 0, "RING_EMR"}, \
{ RING_EIR(0), REG_32BIT, 0, 0, "RING_EIR"}, \
{ RING_IMR(0), REG_32BIT, 0, 0, "RING_IMR"}, \
{ RING_IPEHR(0), REG_32BIT, 0, 0, "IPEHR"}, \
{ RING_INSTDONE(0), REG_32BIT, 0, 0, "RING_INSTDONE"}, \
{ INDIRECT_RING_STATE(0), REG_32BIT, 0, 0, "INDIRECT_RING_STATE"}, \
{ RING_ACTHD(0), REG_64BIT_LOW_DW, 0, 0, NULL}, \
{ RING_ACTHD_UDW(0), REG_64BIT_HI_DW, 0, 0, "ACTHD"}, \
{ RING_BBADDR(0), REG_64BIT_LOW_DW, 0, 0, NULL}, \
{ RING_BBADDR_UDW(0), REG_64BIT_HI_DW, 0, 0, "RING_BBADDR"}, \
{ RING_START(0), REG_64BIT_LOW_DW, 0, 0, NULL}, \
{ RING_START_UDW(0), REG_64BIT_HI_DW, 0, 0, "RING_START"}, \
{ RING_DMA_FADD(0), REG_64BIT_LOW_DW, 0, 0, NULL}, \
{ RING_DMA_FADD_UDW(0), REG_64BIT_HI_DW, 0, 0, "RING_DMA_FADD"}, \
{ RING_EXECLIST_STATUS_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL}, \
{ RING_EXECLIST_STATUS_HI(0), REG_64BIT_HI_DW, 0, 0, "RING_EXECLIST_STATUS"}, \
{ RING_EXECLIST_SQ_CONTENTS_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL}, \
{ RING_EXECLIST_SQ_CONTENTS_HI(0), REG_64BIT_HI_DW, 0, 0, "RING_EXECLIST_SQ_CONTENTS"}
#define COMMON_XELP_RC_CLASS \
{ RCU_MODE, REG_32BIT, 0, 0, "RCU_MODE"}
#define COMMON_XELP_RC_CLASS_INSTDONE \
{ SC_INSTDONE, REG_32BIT, 0, 0, "SC_INSTDONE"}, \
{ SC_INSTDONE_EXTRA, REG_32BIT, 0, 0, "SC_INSTDONE_EXTRA"}, \
{ SC_INSTDONE_EXTRA2, REG_32BIT, 0, 0, "SC_INSTDONE_EXTRA2"}
#define XELP_VEC_CLASS_REGS \
{ SFC_DONE(0), 0, 0, 0, "SFC_DONE[0]"}, \
{ SFC_DONE(1), 0, 0, 0, "SFC_DONE[1]"}, \
{ SFC_DONE(2), 0, 0, 0, "SFC_DONE[2]"}, \
{ SFC_DONE(3), 0, 0, 0, "SFC_DONE[3]"}
/* XE_LP Global */
static const struct __guc_mmio_reg_descr xe_lp_global_regs[] = {
COMMON_XELP_BASE_GLOBAL,
};
/* Render / Compute Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_rc_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* Render / Compute Engine-Class */
static const struct __guc_mmio_reg_descr xe_rc_class_regs[] = {
COMMON_XELP_RC_CLASS,
COMMON_XELP_RC_CLASS_INSTDONE,
};
/* Render / Compute Engine-Class for xehpg */
static const struct __guc_mmio_reg_descr xe_hpg_rc_class_regs[] = {
COMMON_XELP_RC_CLASS,
};
/* Media Decode/Encode Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_vd_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* Video Enhancement Engine-Class */
static const struct __guc_mmio_reg_descr xe_vec_class_regs[] = {
XELP_VEC_CLASS_REGS,
};
/* Video Enhancement Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_vec_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* Blitter Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_blt_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/* XE_LP - GSC Per-Engine-Instance */
static const struct __guc_mmio_reg_descr xe_lp_gsc_inst_regs[] = {
COMMON_BASE_ENGINE_INSTANCE,
};
/*
* Empty list to prevent warnings about unknown class/instance types
* as not all class/instance types have entries on all platforms.
*/
static const struct __guc_mmio_reg_descr empty_regs_list[] = {
};
#define TO_GCAP_DEF_OWNER(x) (GUC_CAPTURE_LIST_INDEX_##x)
#define TO_GCAP_DEF_TYPE(x) (GUC_STATE_CAPTURE_TYPE_##x)
#define MAKE_REGLIST(regslist, regsowner, regstype, class) \
{ \
regslist, \
ARRAY_SIZE(regslist), \
TO_GCAP_DEF_OWNER(regsowner), \
TO_GCAP_DEF_TYPE(regstype), \
class \
}
/* List of lists for legacy graphic product version < 1255 */
static const struct __guc_mmio_reg_descr_group xe_lp_lists[] = {
MAKE_REGLIST(xe_lp_global_regs, PF, GLOBAL, 0),
MAKE_REGLIST(xe_rc_class_regs, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE),
MAKE_REGLIST(xe_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEO),
MAKE_REGLIST(xe_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEO),
MAKE_REGLIST(xe_vec_class_regs, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE),
MAKE_REGLIST(xe_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_BLITTER),
MAKE_REGLIST(xe_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_BLITTER),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_GSC_OTHER),
MAKE_REGLIST(xe_lp_gsc_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_GSC_OTHER),
{}
};
/* List of lists for graphic product version >= 1255 */
static const struct __guc_mmio_reg_descr_group xe_hpg_lists[] = {
MAKE_REGLIST(xe_lp_global_regs, PF, GLOBAL, 0),
MAKE_REGLIST(xe_hpg_rc_class_regs, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE),
MAKE_REGLIST(xe_rc_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEO),
MAKE_REGLIST(xe_vd_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEO),
MAKE_REGLIST(xe_vec_class_regs, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE),
MAKE_REGLIST(xe_vec_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_VIDEOENHANCE),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_BLITTER),
MAKE_REGLIST(xe_blt_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_BLITTER),
MAKE_REGLIST(empty_regs_list, PF, ENGINE_CLASS, GUC_CAPTURE_LIST_CLASS_GSC_OTHER),
MAKE_REGLIST(xe_lp_gsc_inst_regs, PF, ENGINE_INSTANCE, GUC_CAPTURE_LIST_CLASS_GSC_OTHER),
{}
};
static const char * const capture_list_type_names[] = {
"Global",
"Class",
"Instance",
};
static const char * const capture_engine_class_names[] = {
"Render/Compute",
"Video",
"VideoEnhance",
"Blitter",
"GSC-Other",
};
struct __guc_capture_ads_cache {
bool is_valid;
void *ptr;
size_t size;
int status;
};
struct xe_guc_state_capture {
const struct __guc_mmio_reg_descr_group *reglists;
/**
* NOTE: steered registers have multiple instances depending on the HW configuration
* (slices or dual-sub-slices) and thus depends on HW fuses discovered
*/
struct __guc_mmio_reg_descr_group *extlists;
struct __guc_capture_ads_cache ads_cache[GUC_CAPTURE_LIST_INDEX_MAX]
[GUC_STATE_CAPTURE_TYPE_MAX]
[GUC_CAPTURE_LIST_CLASS_MAX];
void *ads_null_cache;
struct list_head cachelist;
#define PREALLOC_NODES_MAX_COUNT (3 * GUC_MAX_ENGINE_CLASSES * GUC_MAX_INSTANCES_PER_CLASS)
#define PREALLOC_NODES_DEFAULT_NUMREGS 64
int max_mmio_per_node;
struct list_head outlist;
};
static void
guc_capture_remove_stale_matches_from_list(struct xe_guc_state_capture *gc,
struct __guc_capture_parsed_output *node);
static const struct __guc_mmio_reg_descr_group *
guc_capture_get_device_reglist(struct xe_device *xe)
{
if (GRAPHICS_VERx100(xe) >= 1255)
return xe_hpg_lists;
else
return xe_lp_lists;
}
static const struct __guc_mmio_reg_descr_group *
guc_capture_get_one_list(const struct __guc_mmio_reg_descr_group *reglists,
u32 owner, u32 type, enum guc_capture_list_class_type capture_class)
{
int i;
if (!reglists)
return NULL;
for (i = 0; reglists[i].list; ++i) {
if (reglists[i].owner == owner && reglists[i].type == type &&
(reglists[i].engine == capture_class ||
reglists[i].type == GUC_STATE_CAPTURE_TYPE_GLOBAL))
return &reglists[i];
}
return NULL;
}
const struct __guc_mmio_reg_descr_group *
xe_guc_capture_get_reg_desc_list(struct xe_gt *gt, u32 owner, u32 type,
enum guc_capture_list_class_type capture_class, bool is_ext)
{
const struct __guc_mmio_reg_descr_group *reglists;
if (is_ext) {
struct xe_guc *guc = &gt->uc.guc;
reglists = guc->capture->extlists;
} else {
reglists = guc_capture_get_device_reglist(gt_to_xe(gt));
}
return guc_capture_get_one_list(reglists, owner, type, capture_class);
}
struct __ext_steer_reg {
const char *name;
struct xe_reg_mcr reg;
};
static const struct __ext_steer_reg xe_extregs[] = {
{"SAMPLER_INSTDONE", SAMPLER_INSTDONE},
{"ROW_INSTDONE", ROW_INSTDONE}
};
static const struct __ext_steer_reg xehpg_extregs[] = {
{"SC_INSTDONE", XEHPG_SC_INSTDONE},
{"SC_INSTDONE_EXTRA", XEHPG_SC_INSTDONE_EXTRA},
{"SC_INSTDONE_EXTRA2", XEHPG_SC_INSTDONE_EXTRA2},
{"INSTDONE_GEOM_SVGUNIT", XEHPG_INSTDONE_GEOM_SVGUNIT}
};
static void __fill_ext_reg(struct __guc_mmio_reg_descr *ext,
const struct __ext_steer_reg *extlist,
int slice_id, int subslice_id)
{
if (!ext || !extlist)
return;
ext->reg = XE_REG(extlist->reg.__reg.addr);
ext->flags = FIELD_PREP(GUC_REGSET_STEERING_NEEDED, 1);
ext->flags = FIELD_PREP(GUC_REGSET_STEERING_GROUP, slice_id);
ext->flags |= FIELD_PREP(GUC_REGSET_STEERING_INSTANCE, subslice_id);
ext->regname = extlist->name;
}
static int
__alloc_ext_regs(struct drm_device *drm, struct __guc_mmio_reg_descr_group *newlist,
const struct __guc_mmio_reg_descr_group *rootlist, int num_regs)
{
struct __guc_mmio_reg_descr *list;
list = drmm_kzalloc(drm, num_regs * sizeof(struct __guc_mmio_reg_descr), GFP_KERNEL);
if (!list)
return -ENOMEM;
newlist->list = list;
newlist->num_regs = num_regs;
newlist->owner = rootlist->owner;
newlist->engine = rootlist->engine;
newlist->type = rootlist->type;
return 0;
}
static int guc_capture_get_steer_reg_num(struct xe_device *xe)
{
int num = ARRAY_SIZE(xe_extregs);
if (GRAPHICS_VERx100(xe) >= 1255)
num += ARRAY_SIZE(xehpg_extregs);
return num;
}
static void guc_capture_alloc_steered_lists(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u16 slice, subslice;
int iter, i, total = 0;
const struct __guc_mmio_reg_descr_group *lists = guc->capture->reglists;
const struct __guc_mmio_reg_descr_group *list;
struct __guc_mmio_reg_descr_group *extlists;
struct __guc_mmio_reg_descr *extarray;
bool has_xehpg_extregs = GRAPHICS_VERx100(gt_to_xe(gt)) >= 1255;
struct drm_device *drm = &gt_to_xe(gt)->drm;
bool has_rcs_ccs = false;
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
/*
* If GT has no rcs/ccs, no need to alloc steered list.
* Currently, only rcs/ccs has steering register, if in the future,
* other engine types has steering register, this condition check need
* to be extended
*/
for_each_hw_engine(hwe, gt, id) {
if (xe_engine_class_to_guc_capture_class(hwe->class) ==
GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE) {
has_rcs_ccs = true;
break;
}
}
if (!has_rcs_ccs)
return;
/* steered registers currently only exist for the render-class */
list = guc_capture_get_one_list(lists, GUC_CAPTURE_LIST_INDEX_PF,
GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS,
GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE);
/*
* Skip if this platform has no engine class registers or if extlists
* was previously allocated
*/
if (!list || guc->capture->extlists)
return;
total = bitmap_weight(gt->fuse_topo.g_dss_mask, sizeof(gt->fuse_topo.g_dss_mask) * 8) *
guc_capture_get_steer_reg_num(guc_to_xe(guc));
if (!total)
return;
/* allocate an extra for an end marker */
extlists = drmm_kzalloc(drm, 2 * sizeof(struct __guc_mmio_reg_descr_group), GFP_KERNEL);
if (!extlists)
return;
if (__alloc_ext_regs(drm, &extlists[0], list, total)) {
drmm_kfree(drm, extlists);
return;
}
/* For steering registers, the list is generated at run-time */
extarray = (struct __guc_mmio_reg_descr *)extlists[0].list;
for_each_dss_steering(iter, gt, slice, subslice) {
for (i = 0; i < ARRAY_SIZE(xe_extregs); ++i) {
__fill_ext_reg(extarray, &xe_extregs[i], slice, subslice);
++extarray;
}
if (has_xehpg_extregs)
for (i = 0; i < ARRAY_SIZE(xehpg_extregs); ++i) {
__fill_ext_reg(extarray, &xehpg_extregs[i], slice, subslice);
++extarray;
}
}
extlists[0].num_regs = total;
xe_gt_dbg(guc_to_gt(guc), "capture found %d ext-regs.\n", total);
guc->capture->extlists = extlists;
}
static int
guc_capture_list_init(struct xe_guc *guc, u32 owner, u32 type,
enum guc_capture_list_class_type capture_class, struct guc_mmio_reg *ptr,
u16 num_entries)
{
u32 ptr_idx = 0, list_idx = 0;
const struct __guc_mmio_reg_descr_group *reglists = guc->capture->reglists;
struct __guc_mmio_reg_descr_group *extlists = guc->capture->extlists;
const struct __guc_mmio_reg_descr_group *match;
u32 list_num;
if (!reglists)
return -ENODEV;
match = guc_capture_get_one_list(reglists, owner, type, capture_class);
if (!match)
return -ENODATA;
list_num = match->num_regs;
for (list_idx = 0; ptr_idx < num_entries && list_idx < list_num; ++list_idx, ++ptr_idx) {
ptr[ptr_idx].offset = match->list[list_idx].reg.addr;
ptr[ptr_idx].value = 0xDEADF00D;
ptr[ptr_idx].flags = match->list[list_idx].flags;
ptr[ptr_idx].mask = match->list[list_idx].mask;
}
match = guc_capture_get_one_list(extlists, owner, type, capture_class);
if (match)
for (ptr_idx = list_num, list_idx = 0;
ptr_idx < num_entries && list_idx < match->num_regs;
++ptr_idx, ++list_idx) {
ptr[ptr_idx].offset = match->list[list_idx].reg.addr;
ptr[ptr_idx].value = 0xDEADF00D;
ptr[ptr_idx].flags = match->list[list_idx].flags;
ptr[ptr_idx].mask = match->list[list_idx].mask;
}
if (ptr_idx < num_entries)
xe_gt_dbg(guc_to_gt(guc), "Got short capture reglist init: %d out-of %d.\n",
ptr_idx, num_entries);
return 0;
}
static int
guc_cap_list_num_regs(struct xe_guc *guc, u32 owner, u32 type,
enum guc_capture_list_class_type capture_class)
{
const struct __guc_mmio_reg_descr_group *match;
int num_regs = 0;
match = guc_capture_get_one_list(guc->capture->reglists, owner, type, capture_class);
if (match)
num_regs = match->num_regs;
match = guc_capture_get_one_list(guc->capture->extlists, owner, type, capture_class);
if (match)
num_regs += match->num_regs;
else
/*
* If a caller wants the full register dump size but we have
* not yet got the hw-config, which is before max_mmio_per_node
* is initialized, then provide a worst-case number for
* extlists based on max dss fuse bits, but only ever for
* render/compute
*/
if (owner == GUC_CAPTURE_LIST_INDEX_PF &&
type == GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS &&
capture_class == GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE &&
!guc->capture->max_mmio_per_node)
num_regs += guc_capture_get_steer_reg_num(guc_to_xe(guc)) *
XE_MAX_DSS_FUSE_BITS;
return num_regs;
}
static int
guc_capture_getlistsize(struct xe_guc *guc, u32 owner, u32 type,
enum guc_capture_list_class_type capture_class,
size_t *size, bool is_purpose_est)
{
struct xe_guc_state_capture *gc = guc->capture;
struct xe_gt *gt = guc_to_gt(guc);
struct __guc_capture_ads_cache *cache;
int num_regs;
xe_gt_assert(gt, type < GUC_STATE_CAPTURE_TYPE_MAX);
xe_gt_assert(gt, capture_class < GUC_CAPTURE_LIST_CLASS_MAX);
cache = &gc->ads_cache[owner][type][capture_class];
if (!gc->reglists) {
xe_gt_warn(gt, "No capture reglist for this device\n");
return -ENODEV;
}
if (cache->is_valid) {
*size = cache->size;
return cache->status;
}
if (!is_purpose_est && owner == GUC_CAPTURE_LIST_INDEX_PF &&
!guc_capture_get_one_list(gc->reglists, owner, type, capture_class)) {
if (type == GUC_STATE_CAPTURE_TYPE_GLOBAL)
xe_gt_warn(gt, "Missing capture reglist: global!\n");
else
xe_gt_warn(gt, "Missing capture reglist: %s(%u):%s(%u)!\n",
capture_list_type_names[type], type,
capture_engine_class_names[capture_class], capture_class);
return -ENODEV;
}
num_regs = guc_cap_list_num_regs(guc, owner, type, capture_class);
/* intentional empty lists can exist depending on hw config */
if (!num_regs)
return -ENODATA;
if (size)
*size = PAGE_ALIGN((sizeof(struct guc_debug_capture_list)) +
(num_regs * sizeof(struct guc_mmio_reg)));
return 0;
}
/**
* xe_guc_capture_getlistsize - Get list size for owner/type/class combination
* @guc: The GuC object
* @owner: PF/VF owner
* @type: GuC capture register type
* @capture_class: GuC capture engine class id
* @size: Point to the size
*
* This function will get the list for the owner/type/class combination, and
* return the page aligned list size.
*
* Returns: 0 on success or a negative error code on failure.
*/
int
xe_guc_capture_getlistsize(struct xe_guc *guc, u32 owner, u32 type,
enum guc_capture_list_class_type capture_class, size_t *size)
{
return guc_capture_getlistsize(guc, owner, type, capture_class, size, false);
}
/**
* xe_guc_capture_getlist - Get register capture list for owner/type/class
* combination
* @guc: The GuC object
* @owner: PF/VF owner
* @type: GuC capture register type
* @capture_class: GuC capture engine class id
* @outptr: Point to cached register capture list
*
* This function will get the register capture list for the owner/type/class
* combination.
*
* Returns: 0 on success or a negative error code on failure.
*/
int
xe_guc_capture_getlist(struct xe_guc *guc, u32 owner, u32 type,
enum guc_capture_list_class_type capture_class, void **outptr)
{
struct xe_guc_state_capture *gc = guc->capture;
struct __guc_capture_ads_cache *cache = &gc->ads_cache[owner][type][capture_class];
struct guc_debug_capture_list *listnode;
int ret, num_regs;
u8 *caplist, *tmp;
size_t size = 0;
if (!gc->reglists)
return -ENODEV;
if (cache->is_valid) {
*outptr = cache->ptr;
return cache->status;
}
ret = xe_guc_capture_getlistsize(guc, owner, type, capture_class, &size);
if (ret) {
cache->is_valid = true;
cache->ptr = NULL;
cache->size = 0;
cache->status = ret;
return ret;
}
caplist = drmm_kzalloc(guc_to_drm(guc), size, GFP_KERNEL);
if (!caplist)
return -ENOMEM;
/* populate capture list header */
tmp = caplist;
num_regs = guc_cap_list_num_regs(guc, owner, type, capture_class);
listnode = (struct guc_debug_capture_list *)tmp;
listnode->header.info = FIELD_PREP(GUC_CAPTURELISTHDR_NUMDESCR, (u32)num_regs);
/* populate list of register descriptor */
tmp += sizeof(struct guc_debug_capture_list);
guc_capture_list_init(guc, owner, type, capture_class,
(struct guc_mmio_reg *)tmp, num_regs);
/* cache this list */
cache->is_valid = true;
cache->ptr = caplist;
cache->size = size;
cache->status = 0;
*outptr = caplist;
return 0;
}
/**
* xe_guc_capture_getnullheader - Get a null list for register capture
* @guc: The GuC object
* @outptr: Point to cached register capture list
* @size: Point to the size
*
* This function will alloc for a null list for register capture.
*
* Returns: 0 on success or a negative error code on failure.
*/
int
xe_guc_capture_getnullheader(struct xe_guc *guc, void **outptr, size_t *size)
{
struct xe_guc_state_capture *gc = guc->capture;
int tmp = sizeof(u32) * 4;
void *null_header;
if (gc->ads_null_cache) {
*outptr = gc->ads_null_cache;
*size = tmp;
return 0;
}
null_header = drmm_kzalloc(guc_to_drm(guc), tmp, GFP_KERNEL);
if (!null_header)
return -ENOMEM;
gc->ads_null_cache = null_header;
*outptr = null_header;
*size = tmp;
return 0;
}
/**
* xe_guc_capture_ads_input_worst_size - Calculate the worst size for GuC register capture
* @guc: point to xe_guc structure
*
* Calculate the worst size for GuC register capture by including all possible engines classes.
*
* Returns: Calculated size
*/
size_t xe_guc_capture_ads_input_worst_size(struct xe_guc *guc)
{
size_t total_size, class_size, instance_size, global_size;
int i, j;
/*
* This function calculates the worst case register lists size by
* including all possible engines classes. It is called during the
* first of a two-phase GuC (and ADS-population) initialization
* sequence, that is, during the pre-hwconfig phase before we have
* the exact engine fusing info.
*/
total_size = PAGE_SIZE; /* Pad a page in front for empty lists */
for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; i++) {
for (j = 0; j < GUC_CAPTURE_LIST_CLASS_MAX; j++) {
if (xe_guc_capture_getlistsize(guc, i,
GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS,
j, &class_size) < 0)
class_size = 0;
if (xe_guc_capture_getlistsize(guc, i,
GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE,
j, &instance_size) < 0)
instance_size = 0;
total_size += class_size + instance_size;
}
if (xe_guc_capture_getlistsize(guc, i,
GUC_STATE_CAPTURE_TYPE_GLOBAL,
0, &global_size) < 0)
global_size = 0;
total_size += global_size;
}
return PAGE_ALIGN(total_size);
}
static int guc_capture_output_size_est(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
int capture_size = 0;
size_t tmp = 0;
if (!guc->capture)
return -ENODEV;
/*
* If every single engine-instance suffered a failure in quick succession but
* were all unrelated, then a burst of multiple error-capture events would dump
* registers for every one engine instance, one at a time. In this case, GuC
* would even dump the global-registers repeatedly.
*
* For each engine instance, there would be 1 x guc_state_capture_group_t output
* followed by 3 x guc_state_capture_t lists. The latter is how the register
* dumps are split across different register types (where the '3' are global vs class
* vs instance).
*/
for_each_hw_engine(hwe, gt, id) {
enum guc_capture_list_class_type capture_class;
capture_class = xe_engine_class_to_guc_capture_class(hwe->class);
capture_size += sizeof(struct guc_state_capture_group_header_t) +
(3 * sizeof(struct guc_state_capture_header_t));
if (!guc_capture_getlistsize(guc, 0, GUC_STATE_CAPTURE_TYPE_GLOBAL,
0, &tmp, true))
capture_size += tmp;
if (!guc_capture_getlistsize(guc, 0, GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS,
capture_class, &tmp, true))
capture_size += tmp;
if (!guc_capture_getlistsize(guc, 0, GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE,
capture_class, &tmp, true))
capture_size += tmp;
}
return capture_size;
}
/*
* Add on a 3x multiplier to allow for multiple back-to-back captures occurring
* before the Xe can read the data out and process it
*/
#define GUC_CAPTURE_OVERBUFFER_MULTIPLIER 3
static void check_guc_capture_size(struct xe_guc *guc)
{
int capture_size = guc_capture_output_size_est(guc);
int spare_size = capture_size * GUC_CAPTURE_OVERBUFFER_MULTIPLIER;
u32 buffer_size = xe_guc_log_section_size_capture(&guc->log);
/*
* NOTE: capture_size is much smaller than the capture region
* allocation (DG2: <80K vs 1MB).
* Additionally, its based on space needed to fit all engines getting
* reset at once within the same G2H handler task slot. This is very
* unlikely. However, if GuC really does run out of space for whatever
* reason, we will see an separate warning message when processing the
* G2H event capture-notification, search for:
* xe_guc_STATE_CAPTURE_EVENT_STATUS_NOSPACE.
*/
if (capture_size < 0)
xe_gt_dbg(guc_to_gt(guc),
"Failed to calculate error state capture buffer minimum size: %d!\n",
capture_size);
if (capture_size > buffer_size)
xe_gt_dbg(guc_to_gt(guc), "Error state capture buffer maybe small: %d < %d\n",
buffer_size, capture_size);
else if (spare_size > buffer_size)
xe_gt_dbg(guc_to_gt(guc),
"Error state capture buffer lacks spare size: %d < %d (min = %d)\n",
buffer_size, spare_size, capture_size);
}
static void
guc_capture_add_node_to_list(struct __guc_capture_parsed_output *node,
struct list_head *list)
{
list_add(&node->link, list);
}
static void
guc_capture_add_node_to_outlist(struct xe_guc_state_capture *gc,
struct __guc_capture_parsed_output *node)
{
guc_capture_remove_stale_matches_from_list(gc, node);
guc_capture_add_node_to_list(node, &gc->outlist);
}
static void
guc_capture_add_node_to_cachelist(struct xe_guc_state_capture *gc,
struct __guc_capture_parsed_output *node)
{
guc_capture_add_node_to_list(node, &gc->cachelist);
}
static void
guc_capture_free_outlist_node(struct xe_guc_state_capture *gc,
struct __guc_capture_parsed_output *n)
{
if (n) {
n->locked = 0;
list_del(&n->link);
/* put node back to cache list */
guc_capture_add_node_to_cachelist(gc, n);
}
}
static void
guc_capture_remove_stale_matches_from_list(struct xe_guc_state_capture *gc,
struct __guc_capture_parsed_output *node)
{
struct __guc_capture_parsed_output *n, *ntmp;
int guc_id = node->guc_id;
list_for_each_entry_safe(n, ntmp, &gc->outlist, link) {
if (n != node && !n->locked && n->guc_id == guc_id)
guc_capture_free_outlist_node(gc, n);
}
}
static void
guc_capture_init_node(struct xe_guc *guc, struct __guc_capture_parsed_output *node)
{
struct guc_mmio_reg *tmp[GUC_STATE_CAPTURE_TYPE_MAX];
int i;
for (i = 0; i < GUC_STATE_CAPTURE_TYPE_MAX; ++i) {
tmp[i] = node->reginfo[i].regs;
memset(tmp[i], 0, sizeof(struct guc_mmio_reg) *
guc->capture->max_mmio_per_node);
}
memset(node, 0, sizeof(*node));
for (i = 0; i < GUC_STATE_CAPTURE_TYPE_MAX; ++i)
node->reginfo[i].regs = tmp[i];
INIT_LIST_HEAD(&node->link);
}
/**
* DOC: Init, G2H-event and reporting flows for GuC-error-capture
*
* KMD Init time flows:
* --------------------
* --> alloc A: GuC input capture regs lists (registered to GuC via ADS).
* xe_guc_ads acquires the register lists by calling
* xe_guc_capture_getlistsize and xe_guc_capture_getlist 'n' times,
* where n = 1 for global-reg-list +
* num_engine_classes for class-reg-list +
* num_engine_classes for instance-reg-list
* (since all instances of the same engine-class type
* have an identical engine-instance register-list).
* ADS module also calls separately for PF vs VF.
*
* --> alloc B: GuC output capture buf (registered via guc_init_params(log_param))
* Size = #define CAPTURE_BUFFER_SIZE (warns if on too-small)
* Note2: 'x 3' to hold multiple capture groups
*
* GUC Runtime notify capture:
* --------------------------
* --> G2H STATE_CAPTURE_NOTIFICATION
* L--> xe_guc_capture_process
* L--> Loop through B (head..tail) and for each engine instance's
* err-state-captured register-list we find, we alloc 'C':
* --> alloc C: A capture-output-node structure that includes misc capture info along
* with 3 register list dumps (global, engine-class and engine-instance)
* This node is created from a pre-allocated list of blank nodes in
* guc->capture->cachelist and populated with the error-capture
* data from GuC and then it's added into guc->capture->outlist linked
* list. This list is used for matchup and printout by xe_devcoredump_read
* and xe_engine_snapshot_print, (when user invokes the devcoredump sysfs).
*
* GUC --> notify context reset:
* -----------------------------
* --> guc_exec_queue_timedout_job
* L--> xe_devcoredump
* L--> devcoredump_snapshot
* --> xe_hw_engine_snapshot_capture
* --> xe_engine_manual_capture(For manual capture)
*
* User Sysfs / Debugfs
* --------------------
* --> xe_devcoredump_read->
* L--> xxx_snapshot_print
* L--> xe_engine_snapshot_print
* Print register lists values saved at
* guc->capture->outlist
*
*/
static int guc_capture_buf_cnt(struct __guc_capture_bufstate *buf)
{
if (buf->wr >= buf->rd)
return (buf->wr - buf->rd);
return (buf->size - buf->rd) + buf->wr;
}
static int guc_capture_buf_cnt_to_end(struct __guc_capture_bufstate *buf)
{
if (buf->rd > buf->wr)
return (buf->size - buf->rd);
return (buf->wr - buf->rd);
}
/*
* GuC's error-capture output is a ring buffer populated in a byte-stream fashion:
*
* The GuC Log buffer region for error-capture is managed like a ring buffer.
* The GuC firmware dumps error capture logs into this ring in a byte-stream flow.
* Additionally, as per the current and foreseeable future, all packed error-
* capture output structures are dword aligned.
*
* That said, if the GuC firmware is in the midst of writing a structure that is larger
* than one dword but the tail end of the err-capture buffer-region has lesser space left,
* we would need to extract that structure one dword at a time straddled across the end,
* onto the start of the ring.
*
* Below function, guc_capture_log_remove_bytes is a helper for that. All callers of this
* function would typically do a straight-up memcpy from the ring contents and will only
* call this helper if their structure-extraction is straddling across the end of the
* ring. GuC firmware does not add any padding. The reason for the no-padding is to ease
* scalability for future expansion of output data types without requiring a redesign
* of the flow controls.
*/
static int
guc_capture_log_remove_bytes(struct xe_guc *guc, struct __guc_capture_bufstate *buf,
void *out, int bytes_needed)
{
#define GUC_CAPTURE_LOG_BUF_COPY_RETRY_MAX 3
int fill_size = 0, tries = GUC_CAPTURE_LOG_BUF_COPY_RETRY_MAX;
int copy_size, avail;
xe_assert(guc_to_xe(guc), bytes_needed % sizeof(u32) == 0);
if (bytes_needed > guc_capture_buf_cnt(buf))
return -1;
while (bytes_needed > 0 && tries--) {
int misaligned;
avail = guc_capture_buf_cnt_to_end(buf);
misaligned = avail % sizeof(u32);
/* wrap if at end */
if (!avail) {
/* output stream clipped */
if (!buf->rd)
return fill_size;
buf->rd = 0;
continue;
}
/* Only copy to u32 aligned data */
copy_size = avail < bytes_needed ? avail - misaligned : bytes_needed;
xe_map_memcpy_from(guc_to_xe(guc), out + fill_size, &guc->log.bo->vmap,
buf->data_offset + buf->rd, copy_size);
buf->rd += copy_size;
fill_size += copy_size;
bytes_needed -= copy_size;
if (misaligned)
xe_gt_warn(guc_to_gt(guc),
"Bytes extraction not dword aligned, clipping.\n");
}
return fill_size;
}
static int
guc_capture_log_get_group_hdr(struct xe_guc *guc, struct __guc_capture_bufstate *buf,
struct guc_state_capture_group_header_t *ghdr)
{
int fullsize = sizeof(struct guc_state_capture_group_header_t);
if (guc_capture_log_remove_bytes(guc, buf, ghdr, fullsize) != fullsize)
return -1;
return 0;
}
static int
guc_capture_log_get_data_hdr(struct xe_guc *guc, struct __guc_capture_bufstate *buf,
struct guc_state_capture_header_t *hdr)
{
int fullsize = sizeof(struct guc_state_capture_header_t);
if (guc_capture_log_remove_bytes(guc, buf, hdr, fullsize) != fullsize)
return -1;
return 0;
}
static int
guc_capture_log_get_register(struct xe_guc *guc, struct __guc_capture_bufstate *buf,
struct guc_mmio_reg *reg)
{
int fullsize = sizeof(struct guc_mmio_reg);
if (guc_capture_log_remove_bytes(guc, buf, reg, fullsize) != fullsize)
return -1;
return 0;
}
static struct __guc_capture_parsed_output *
guc_capture_get_prealloc_node(struct xe_guc *guc)
{
struct __guc_capture_parsed_output *found = NULL;
if (!list_empty(&guc->capture->cachelist)) {
struct __guc_capture_parsed_output *n, *ntmp;
/* get first avail node from the cache list */
list_for_each_entry_safe(n, ntmp, &guc->capture->cachelist, link) {
found = n;
break;
}
} else {
struct __guc_capture_parsed_output *n, *ntmp;
/*
* traverse reversed and steal back the oldest node already
* allocated
*/
list_for_each_entry_safe_reverse(n, ntmp, &guc->capture->outlist, link) {
if (!n->locked)
found = n;
}
}
if (found) {
list_del(&found->link);
guc_capture_init_node(guc, found);
}
return found;
}
static struct __guc_capture_parsed_output *
guc_capture_clone_node(struct xe_guc *guc, struct __guc_capture_parsed_output *original,
u32 keep_reglist_mask)
{
struct __guc_capture_parsed_output *new;
int i;
new = guc_capture_get_prealloc_node(guc);
if (!new)
return NULL;
if (!original)
return new;
new->is_partial = original->is_partial;
/* copy reg-lists that we want to clone */
for (i = 0; i < GUC_STATE_CAPTURE_TYPE_MAX; ++i) {
if (keep_reglist_mask & BIT(i)) {
XE_WARN_ON(original->reginfo[i].num_regs >
guc->capture->max_mmio_per_node);
memcpy(new->reginfo[i].regs, original->reginfo[i].regs,
original->reginfo[i].num_regs * sizeof(struct guc_mmio_reg));
new->reginfo[i].num_regs = original->reginfo[i].num_regs;
new->reginfo[i].vfid = original->reginfo[i].vfid;
if (i == GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS) {
new->eng_class = original->eng_class;
} else if (i == GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE) {
new->eng_inst = original->eng_inst;
new->guc_id = original->guc_id;
new->lrca = original->lrca;
}
}
}
return new;
}
static int
guc_capture_extract_reglists(struct xe_guc *guc, struct __guc_capture_bufstate *buf)
{
struct xe_gt *gt = guc_to_gt(guc);
struct guc_state_capture_group_header_t ghdr = {0};
struct guc_state_capture_header_t hdr = {0};
struct __guc_capture_parsed_output *node = NULL;
struct guc_mmio_reg *regs = NULL;
int i, numlists, numregs, ret = 0;
enum guc_state_capture_type datatype;
struct guc_mmio_reg tmp;
bool is_partial = false;
i = guc_capture_buf_cnt(buf);
if (!i)
return -ENODATA;
if (i % sizeof(u32)) {
xe_gt_warn(gt, "Got mis-aligned register capture entries\n");
ret = -EIO;
goto bailout;
}
/* first get the capture group header */
if (guc_capture_log_get_group_hdr(guc, buf, &ghdr)) {
ret = -EIO;
goto bailout;
}
/*
* we would typically expect a layout as below where n would be expected to be
* anywhere between 3 to n where n > 3 if we are seeing multiple dependent engine
* instances being reset together.
* ____________________________________________
* | Capture Group |
* | ________________________________________ |
* | | Capture Group Header: | |
* | | - num_captures = 5 | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture1: | |
* | | Hdr: GLOBAL, numregs=a | |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... rega | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture2: | |
* | | Hdr: CLASS=RENDER/COMPUTE, numregs=b| |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... regb | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture3: | |
* | | Hdr: INSTANCE=RCS, numregs=c | |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... regc | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture4: | |
* | | Hdr: CLASS=RENDER/COMPUTE, numregs=d| |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... regd | | |
* | | |__________________________________| | |
* | |______________________________________| |
* | ________________________________________ |
* | | Capture5: | |
* | | Hdr: INSTANCE=CCS0, numregs=e | |
* | | ____________________________________ | |
* | | | Reglist | | |
* | | | - reg1, reg2, ... rege | | |
* | | |__________________________________| | |
* | |______________________________________| |
* |__________________________________________|
*/
is_partial = FIELD_GET(GUC_STATE_CAPTURE_GROUP_HEADER_CAPTURE_GROUP_TYPE, ghdr.info);
numlists = FIELD_GET(GUC_STATE_CAPTURE_GROUP_HEADER_NUM_CAPTURES, ghdr.info);
while (numlists--) {
if (guc_capture_log_get_data_hdr(guc, buf, &hdr)) {
ret = -EIO;
break;
}
datatype = FIELD_GET(GUC_STATE_CAPTURE_HEADER_CAPTURE_TYPE, hdr.info);
if (datatype > GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE) {
/* unknown capture type - skip over to next capture set */
numregs = FIELD_GET(GUC_STATE_CAPTURE_HEADER_NUM_MMIO_ENTRIES,
hdr.num_mmio_entries);
while (numregs--) {
if (guc_capture_log_get_register(guc, buf, &tmp)) {
ret = -EIO;
break;
}
}
continue;
} else if (node) {
/*
* Based on the current capture type and what we have so far,
* decide if we should add the current node into the internal
* linked list for match-up when xe_devcoredump calls later
* (and alloc a blank node for the next set of reglists)
* or continue with the same node or clone the current node
* but only retain the global or class registers (such as the
* case of dependent engine resets).
*/
if (datatype == GUC_STATE_CAPTURE_TYPE_GLOBAL) {
guc_capture_add_node_to_outlist(guc->capture, node);
node = NULL;
} else if (datatype == GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS &&
node->reginfo[GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS].num_regs) {
/* Add to list, clone node and duplicate global list */
guc_capture_add_node_to_outlist(guc->capture, node);
node = guc_capture_clone_node(guc, node,
GCAP_PARSED_REGLIST_INDEX_GLOBAL);
} else if (datatype == GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE &&
node->reginfo[GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE].num_regs) {
/* Add to list, clone node and duplicate global + class lists */
guc_capture_add_node_to_outlist(guc->capture, node);
node = guc_capture_clone_node(guc, node,
(GCAP_PARSED_REGLIST_INDEX_GLOBAL |
GCAP_PARSED_REGLIST_INDEX_ENGCLASS));
}
}
if (!node) {
node = guc_capture_get_prealloc_node(guc);
if (!node) {
ret = -ENOMEM;
break;
}
if (datatype != GUC_STATE_CAPTURE_TYPE_GLOBAL)
xe_gt_dbg(gt, "Register capture missing global dump: %08x!\n",
datatype);
}
node->is_partial = is_partial;
node->reginfo[datatype].vfid = FIELD_GET(GUC_STATE_CAPTURE_HEADER_VFID, hdr.owner);
node->source = XE_ENGINE_CAPTURE_SOURCE_GUC;
node->type = datatype;
switch (datatype) {
case GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE:
node->eng_class = FIELD_GET(GUC_STATE_CAPTURE_HEADER_ENGINE_CLASS,
hdr.info);
node->eng_inst = FIELD_GET(GUC_STATE_CAPTURE_HEADER_ENGINE_INSTANCE,
hdr.info);
node->lrca = hdr.lrca;
node->guc_id = hdr.guc_id;
break;
case GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS:
node->eng_class = FIELD_GET(GUC_STATE_CAPTURE_HEADER_ENGINE_CLASS,
hdr.info);
break;
default:
break;
}
numregs = FIELD_GET(GUC_STATE_CAPTURE_HEADER_NUM_MMIO_ENTRIES,
hdr.num_mmio_entries);
if (numregs > guc->capture->max_mmio_per_node) {
xe_gt_dbg(gt, "Register capture list extraction clipped by prealloc!\n");
numregs = guc->capture->max_mmio_per_node;
}
node->reginfo[datatype].num_regs = numregs;
regs = node->reginfo[datatype].regs;
i = 0;
while (numregs--) {
if (guc_capture_log_get_register(guc, buf, &regs[i++])) {
ret = -EIO;
break;
}
}
}
bailout:
if (node) {
/* If we have data, add to linked list for match-up when xe_devcoredump calls */
for (i = GUC_STATE_CAPTURE_TYPE_GLOBAL; i < GUC_STATE_CAPTURE_TYPE_MAX; ++i) {
if (node->reginfo[i].regs) {
guc_capture_add_node_to_outlist(guc->capture, node);
node = NULL;
break;
}
}
if (node) /* else return it back to cache list */
guc_capture_add_node_to_cachelist(guc->capture, node);
}
return ret;
}
static int __guc_capture_flushlog_complete(struct xe_guc *guc)
{
u32 action[] = {
XE_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE,
GUC_LOG_BUFFER_CAPTURE
};
return xe_guc_ct_send_g2h_handler(&guc->ct, action, ARRAY_SIZE(action));
}
static void __guc_capture_process_output(struct xe_guc *guc)
{
unsigned int buffer_size, read_offset, write_offset, full_count;
struct xe_uc *uc = container_of(guc, typeof(*uc), guc);
struct guc_log_buffer_state log_buf_state_local;
struct __guc_capture_bufstate buf;
bool new_overflow;
int ret, tmp;
u32 log_buf_state_offset;
u32 src_data_offset;
log_buf_state_offset = sizeof(struct guc_log_buffer_state) * GUC_LOG_BUFFER_CAPTURE;
src_data_offset = xe_guc_get_log_buffer_offset(&guc->log, GUC_LOG_BUFFER_CAPTURE);
/*
* Make a copy of the state structure, inside GuC log buffer
* (which is uncached mapped), on the stack to avoid reading
* from it multiple times.
*/
xe_map_memcpy_from(guc_to_xe(guc), &log_buf_state_local, &guc->log.bo->vmap,
log_buf_state_offset, sizeof(struct guc_log_buffer_state));
buffer_size = xe_guc_get_log_buffer_size(&guc->log, GUC_LOG_BUFFER_CAPTURE);
read_offset = log_buf_state_local.read_ptr;
write_offset = log_buf_state_local.sampled_write_ptr;
full_count = FIELD_GET(GUC_LOG_BUFFER_STATE_BUFFER_FULL_CNT, log_buf_state_local.flags);
/* Bookkeeping stuff */
tmp = FIELD_GET(GUC_LOG_BUFFER_STATE_FLUSH_TO_FILE, log_buf_state_local.flags);
guc->log.stats[GUC_LOG_BUFFER_CAPTURE].flush += tmp;
new_overflow = xe_guc_check_log_buf_overflow(&guc->log, GUC_LOG_BUFFER_CAPTURE,
full_count);
/* Now copy the actual logs. */
if (unlikely(new_overflow)) {
/* copy the whole buffer in case of overflow */
read_offset = 0;
write_offset = buffer_size;
} else if (unlikely((read_offset > buffer_size) ||
(write_offset > buffer_size))) {
xe_gt_err(guc_to_gt(guc),
"Register capture buffer in invalid state: read = 0x%X, size = 0x%X!\n",
read_offset, buffer_size);
/* copy whole buffer as offsets are unreliable */
read_offset = 0;
write_offset = buffer_size;
}
buf.size = buffer_size;
buf.rd = read_offset;
buf.wr = write_offset;
buf.data_offset = src_data_offset;
if (!xe_guc_read_stopped(guc)) {
do {
ret = guc_capture_extract_reglists(guc, &buf);
if (ret && ret != -ENODATA)
xe_gt_dbg(guc_to_gt(guc), "Capture extraction failed:%d\n", ret);
} while (ret >= 0);
}
/* Update the state of log buffer err-cap state */
xe_map_wr(guc_to_xe(guc), &guc->log.bo->vmap,
log_buf_state_offset + offsetof(struct guc_log_buffer_state, read_ptr), u32,
write_offset);
/*
* Clear the flush_to_file from local first, the local was loaded by above
* xe_map_memcpy_from, then write out the "updated local" through
* xe_map_wr()
*/
log_buf_state_local.flags &= ~GUC_LOG_BUFFER_STATE_FLUSH_TO_FILE;
xe_map_wr(guc_to_xe(guc), &guc->log.bo->vmap,
log_buf_state_offset + offsetof(struct guc_log_buffer_state, flags), u32,
log_buf_state_local.flags);
__guc_capture_flushlog_complete(guc);
}
/*
* xe_guc_capture_process - Process GuC register captured data
* @guc: The GuC object
*
* When GuC captured data is ready, GuC will send message
* XE_GUC_ACTION_STATE_CAPTURE_NOTIFICATION to host, this function will be
* called to process the data comes with the message.
*
* Returns: None
*/
void xe_guc_capture_process(struct xe_guc *guc)
{
if (guc->capture)
__guc_capture_process_output(guc);
}
static struct __guc_capture_parsed_output *
guc_capture_alloc_one_node(struct xe_guc *guc)
{
struct drm_device *drm = guc_to_drm(guc);
struct __guc_capture_parsed_output *new;
int i;
new = drmm_kzalloc(drm, sizeof(*new), GFP_KERNEL);
if (!new)
return NULL;
for (i = 0; i < GUC_STATE_CAPTURE_TYPE_MAX; ++i) {
new->reginfo[i].regs = drmm_kzalloc(drm, guc->capture->max_mmio_per_node *
sizeof(struct guc_mmio_reg), GFP_KERNEL);
if (!new->reginfo[i].regs) {
while (i)
drmm_kfree(drm, new->reginfo[--i].regs);
drmm_kfree(drm, new);
return NULL;
}
}
guc_capture_init_node(guc, new);
return new;
}
static void
__guc_capture_create_prealloc_nodes(struct xe_guc *guc)
{
struct __guc_capture_parsed_output *node = NULL;
int i;
for (i = 0; i < PREALLOC_NODES_MAX_COUNT; ++i) {
node = guc_capture_alloc_one_node(guc);
if (!node) {
xe_gt_warn(guc_to_gt(guc), "Register capture pre-alloc-cache failure\n");
/* dont free the priors, use what we got and cleanup at shutdown */
return;
}
guc_capture_add_node_to_cachelist(guc->capture, node);
}
}
static int
guc_get_max_reglist_count(struct xe_guc *guc)
{
int i, j, k, tmp, maxregcount = 0;
for (i = 0; i < GUC_CAPTURE_LIST_INDEX_MAX; ++i) {
for (j = 0; j < GUC_STATE_CAPTURE_TYPE_MAX; ++j) {
for (k = 0; k < GUC_CAPTURE_LIST_CLASS_MAX; ++k) {
const struct __guc_mmio_reg_descr_group *match;
if (j == GUC_STATE_CAPTURE_TYPE_GLOBAL && k > 0)
continue;
tmp = 0;
match = guc_capture_get_one_list(guc->capture->reglists, i, j, k);
if (match)
tmp = match->num_regs;
match = guc_capture_get_one_list(guc->capture->extlists, i, j, k);
if (match)
tmp += match->num_regs;
if (tmp > maxregcount)
maxregcount = tmp;
}
}
}
if (!maxregcount)
maxregcount = PREALLOC_NODES_DEFAULT_NUMREGS;
return maxregcount;
}
static void
guc_capture_create_prealloc_nodes(struct xe_guc *guc)
{
/* skip if we've already done the pre-alloc */
if (guc->capture->max_mmio_per_node)
return;
guc->capture->max_mmio_per_node = guc_get_max_reglist_count(guc);
__guc_capture_create_prealloc_nodes(guc);
}
static void
read_reg_to_node(struct xe_hw_engine *hwe, const struct __guc_mmio_reg_descr_group *list,
struct guc_mmio_reg *regs)
{
int i;
if (!list || !list->list || list->num_regs == 0)
return;
if (!regs)
return;
for (i = 0; i < list->num_regs; i++) {
struct __guc_mmio_reg_descr desc = list->list[i];
u32 value;
if (list->type == GUC_STATE_CAPTURE_TYPE_ENGINE_INSTANCE) {
value = xe_hw_engine_mmio_read32(hwe, desc.reg);
} else {
if (list->type == GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS &&
FIELD_GET(GUC_REGSET_STEERING_NEEDED, desc.flags)) {
int group, instance;
group = FIELD_GET(GUC_REGSET_STEERING_GROUP, desc.flags);
instance = FIELD_GET(GUC_REGSET_STEERING_INSTANCE, desc.flags);
value = xe_gt_mcr_unicast_read(hwe->gt, XE_REG_MCR(desc.reg.addr),
group, instance);
} else {
value = xe_mmio_read32(&hwe->gt->mmio, desc.reg);
}
}
regs[i].value = value;
regs[i].offset = desc.reg.addr;
regs[i].flags = desc.flags;
regs[i].mask = desc.mask;
}
}
/**
* xe_engine_manual_capture - Take a manual engine snapshot from engine.
* @hwe: Xe HW Engine.
* @snapshot: The engine snapshot
*
* Take engine snapshot from engine read.
*
* Returns: None
*/
void
xe_engine_manual_capture(struct xe_hw_engine *hwe, struct xe_hw_engine_snapshot *snapshot)
{
struct xe_gt *gt = hwe->gt;
struct xe_device *xe = gt_to_xe(gt);
struct xe_guc *guc = &gt->uc.guc;
struct xe_devcoredump *devcoredump = &xe->devcoredump;
enum guc_capture_list_class_type capture_class;
const struct __guc_mmio_reg_descr_group *list;
struct __guc_capture_parsed_output *new;
enum guc_state_capture_type type;
u16 guc_id = 0;
u32 lrca = 0;
if (IS_SRIOV_VF(xe))
return;
new = guc_capture_get_prealloc_node(guc);
if (!new)
return;
capture_class = xe_engine_class_to_guc_capture_class(hwe->class);
for (type = GUC_STATE_CAPTURE_TYPE_GLOBAL; type < GUC_STATE_CAPTURE_TYPE_MAX; type++) {
struct gcap_reg_list_info *reginfo = &new->reginfo[type];
/*
* regsinfo->regs is allocated based on guc->capture->max_mmio_per_node
* which is based on the descriptor list driving the population so
* should not overflow
*/
/* Get register list for the type/class */
list = xe_guc_capture_get_reg_desc_list(gt, GUC_CAPTURE_LIST_INDEX_PF, type,
capture_class, false);
if (!list) {
xe_gt_dbg(gt, "Empty GuC capture register descriptor for %s",
hwe->name);
continue;
}
read_reg_to_node(hwe, list, reginfo->regs);
reginfo->num_regs = list->num_regs;
/* Capture steering registers for rcs/ccs */
if (capture_class == GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE) {
list = xe_guc_capture_get_reg_desc_list(gt, GUC_CAPTURE_LIST_INDEX_PF,
type, capture_class, true);
if (list) {
read_reg_to_node(hwe, list, &reginfo->regs[reginfo->num_regs]);
reginfo->num_regs += list->num_regs;
}
}
}
if (devcoredump && devcoredump->captured) {
struct xe_guc_submit_exec_queue_snapshot *ge = devcoredump->snapshot.ge;
if (ge) {
guc_id = ge->guc.id;
if (ge->lrc[0])
lrca = ge->lrc[0]->context_desc;
}
}
new->eng_class = xe_engine_class_to_guc_class(hwe->class);
new->eng_inst = hwe->instance;
new->guc_id = guc_id;
new->lrca = lrca;
new->is_partial = 0;
new->locked = 1;
new->source = XE_ENGINE_CAPTURE_SOURCE_MANUAL;
guc_capture_add_node_to_outlist(guc->capture, new);
devcoredump->snapshot.matched_node = new;
}
static struct guc_mmio_reg *
guc_capture_find_reg(struct gcap_reg_list_info *reginfo, u32 addr, u32 flags)
{
int i;
if (reginfo && reginfo->num_regs > 0) {
struct guc_mmio_reg *regs = reginfo->regs;
if (regs)
for (i = 0; i < reginfo->num_regs; i++)
if (regs[i].offset == addr && regs[i].flags == flags)
return &regs[i];
}
return NULL;
}
static void
snapshot_print_by_list_order(struct xe_hw_engine_snapshot *snapshot, struct drm_printer *p,
u32 type, const struct __guc_mmio_reg_descr_group *list)
{
struct xe_gt *gt = snapshot->hwe->gt;
struct xe_device *xe = gt_to_xe(gt);
struct xe_guc *guc = &gt->uc.guc;
struct xe_devcoredump *devcoredump = &xe->devcoredump;
struct xe_devcoredump_snapshot *devcore_snapshot = &devcoredump->snapshot;
struct gcap_reg_list_info *reginfo = NULL;
u32 i, last_value = 0;
bool is_ext, low32_ready = false;
if (!list || !list->list || list->num_regs == 0)
return;
XE_WARN_ON(!devcore_snapshot->matched_node);
is_ext = list == guc->capture->extlists;
reginfo = &devcore_snapshot->matched_node->reginfo[type];
/*
* loop through descriptor first and find the register in the node
* this is more scalable for developer maintenance as it will ensure
* the printout matched the ordering of the static descriptor
* table-of-lists
*/
for (i = 0; i < list->num_regs; i++) {
const struct __guc_mmio_reg_descr *reg_desc = &list->list[i];
struct guc_mmio_reg *reg;
u32 value;
reg = guc_capture_find_reg(reginfo, reg_desc->reg.addr, reg_desc->flags);
if (!reg)
continue;
value = reg->value;
switch (reg_desc->data_type) {
case REG_64BIT_LOW_DW:
last_value = value;
/*
* A 64 bit register define requires 2 consecutive
* entries in register list, with low dword first
* and hi dword the second, like:
* { XXX_REG_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL},
* { XXX_REG_HI(0), REG_64BIT_HI_DW, 0, 0, "XXX_REG"},
*
* Incorrect order will trigger XE_WARN.
*
* Possible double low here, for example:
* { XXX_REG_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL},
* { XXX_REG_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL},
*/
XE_WARN_ON(low32_ready);
low32_ready = true;
/* Low 32 bit dword saved, continue for high 32 bit */
break;
case REG_64BIT_HI_DW: {
u64 value_qw = ((u64)value << 32) | last_value;
/*
* Incorrect 64bit register order. Possible missing low.
* for example:
* { XXX_REG(0), REG_32BIT, 0, 0, NULL},
* { XXX_REG_HI(0), REG_64BIT_HI_DW, 0, 0, NULL},
*/
XE_WARN_ON(!low32_ready);
low32_ready = false;
drm_printf(p, "\t%s: 0x%016llx\n", reg_desc->regname, value_qw);
break;
}
case REG_32BIT:
/*
* Incorrect 64bit register order. Possible missing high.
* for example:
* { XXX_REG_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL},
* { XXX_REG(0), REG_32BIT, 0, 0, "XXX_REG"},
*/
XE_WARN_ON(low32_ready);
if (is_ext) {
int dss, group, instance;
group = FIELD_GET(GUC_REGSET_STEERING_GROUP, reg_desc->flags);
instance = FIELD_GET(GUC_REGSET_STEERING_INSTANCE, reg_desc->flags);
dss = xe_gt_mcr_steering_info_to_dss_id(gt, group, instance);
drm_printf(p, "\t%s[%u]: 0x%08x\n", reg_desc->regname, dss, value);
} else {
drm_printf(p, "\t%s: 0x%08x\n", reg_desc->regname, value);
}
break;
}
}
/*
* Incorrect 64bit register order. Possible missing high.
* for example:
* { XXX_REG_LO(0), REG_64BIT_LOW_DW, 0, 0, NULL},
* } // <- Register list end
*/
XE_WARN_ON(low32_ready);
}
/**
* xe_engine_snapshot_print - Print out a given Xe HW Engine snapshot.
* @snapshot: Xe HW Engine snapshot object.
* @p: drm_printer where it will be printed out.
*
* This function prints out a given Xe HW Engine snapshot object.
*/
void xe_engine_snapshot_print(struct xe_hw_engine_snapshot *snapshot, struct drm_printer *p)
{
const char *grptype[GUC_STATE_CAPTURE_GROUP_TYPE_MAX] = {
"full-capture",
"partial-capture"
};
int type;
const struct __guc_mmio_reg_descr_group *list;
enum guc_capture_list_class_type capture_class;
struct xe_gt *gt;
struct xe_device *xe;
struct xe_devcoredump *devcoredump;
struct xe_devcoredump_snapshot *devcore_snapshot;
if (!snapshot)
return;
gt = snapshot->hwe->gt;
xe = gt_to_xe(gt);
devcoredump = &xe->devcoredump;
devcore_snapshot = &devcoredump->snapshot;
if (!devcore_snapshot->matched_node)
return;
xe_gt_assert(gt, snapshot->source <= XE_ENGINE_CAPTURE_SOURCE_GUC);
xe_gt_assert(gt, snapshot->hwe);
capture_class = xe_engine_class_to_guc_capture_class(snapshot->hwe->class);
drm_printf(p, "%s (physical), logical instance=%d\n",
snapshot->name ? snapshot->name : "",
snapshot->logical_instance);
drm_printf(p, "\tCapture_source: %s\n",
snapshot->source == XE_ENGINE_CAPTURE_SOURCE_GUC ? "GuC" : "Manual");
drm_printf(p, "\tCoverage: %s\n", grptype[devcore_snapshot->matched_node->is_partial]);
drm_printf(p, "\tForcewake: domain 0x%x, ref %d\n",
snapshot->forcewake.domain, snapshot->forcewake.ref);
drm_printf(p, "\tReserved: %s\n",
str_yes_no(snapshot->kernel_reserved));
for (type = GUC_STATE_CAPTURE_TYPE_GLOBAL; type < GUC_STATE_CAPTURE_TYPE_MAX; type++) {
list = xe_guc_capture_get_reg_desc_list(gt, GUC_CAPTURE_LIST_INDEX_PF, type,
capture_class, false);
snapshot_print_by_list_order(snapshot, p, type, list);
}
if (capture_class == GUC_CAPTURE_LIST_CLASS_RENDER_COMPUTE) {
list = xe_guc_capture_get_reg_desc_list(gt, GUC_CAPTURE_LIST_INDEX_PF,
GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS,
capture_class, true);
snapshot_print_by_list_order(snapshot, p, GUC_STATE_CAPTURE_TYPE_ENGINE_CLASS,
list);
}
drm_puts(p, "\n");
}
/**
* xe_guc_capture_get_matching_and_lock - Matching GuC capture for the job.
* @job: The job object.
*
* Search within the capture outlist for the job, could be used for check if
* GuC capture is ready for the job.
* If found, the locked boolean of the node will be flagged.
*
* Returns: found guc-capture node ptr else NULL
*/
struct __guc_capture_parsed_output *
xe_guc_capture_get_matching_and_lock(struct xe_sched_job *job)
{
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
struct xe_exec_queue *q;
struct xe_device *xe;
u16 guc_class = GUC_LAST_ENGINE_CLASS + 1;
struct xe_devcoredump_snapshot *ss;
if (!job)
return NULL;
q = job->q;
if (!q || !q->gt)
return NULL;
xe = gt_to_xe(q->gt);
if (xe->wedged.mode >= 2 || !xe_device_uc_enabled(xe) || IS_SRIOV_VF(xe))
return NULL;
ss = &xe->devcoredump.snapshot;
if (ss->matched_node && ss->matched_node->source == XE_ENGINE_CAPTURE_SOURCE_GUC)
return ss->matched_node;
/* Find hwe for the job */
for_each_hw_engine(hwe, q->gt, id) {
if (hwe != q->hwe)
continue;
guc_class = xe_engine_class_to_guc_class(hwe->class);
break;
}
if (guc_class <= GUC_LAST_ENGINE_CLASS) {
struct __guc_capture_parsed_output *n, *ntmp;
struct xe_guc *guc = &q->gt->uc.guc;
u16 guc_id = q->guc->id;
u32 lrca = xe_lrc_ggtt_addr(q->lrc[0]);
/*
* Look for a matching GuC reported error capture node from
* the internal output link-list based on engine, guc id and
* lrca info.
*/
list_for_each_entry_safe(n, ntmp, &guc->capture->outlist, link) {
if (n->eng_class == guc_class && n->eng_inst == hwe->instance &&
n->guc_id == guc_id && n->lrca == lrca &&
n->source == XE_ENGINE_CAPTURE_SOURCE_GUC) {
n->locked = 1;
return n;
}
}
}
return NULL;
}
/**
* xe_engine_snapshot_capture_for_job - Take snapshot of associated engine
* @job: The job object
*
* Take snapshot of associated HW Engine
*
* Returns: None.
*/
void
xe_engine_snapshot_capture_for_job(struct xe_sched_job *job)
{
struct xe_exec_queue *q = job->q;
struct xe_device *xe = gt_to_xe(q->gt);
struct xe_devcoredump *coredump = &xe->devcoredump;
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
u32 adj_logical_mask = q->logical_mask;
if (IS_SRIOV_VF(xe))
return;
for_each_hw_engine(hwe, q->gt, id) {
if (hwe->class != q->hwe->class ||
!(BIT(hwe->logical_instance) & adj_logical_mask)) {
coredump->snapshot.hwe[id] = NULL;
continue;
}
if (!coredump->snapshot.hwe[id]) {
coredump->snapshot.hwe[id] = xe_hw_engine_snapshot_capture(hwe, job);
} else {
struct __guc_capture_parsed_output *new;
new = xe_guc_capture_get_matching_and_lock(job);
if (new) {
struct xe_guc *guc = &q->gt->uc.guc;
/*
* If we are in here, it means we found a fresh
* GuC-err-capture node for this engine after
* previously failing to find a match in the
* early part of guc_exec_queue_timedout_job.
* Thus we must free the manually captured node
*/
guc_capture_free_outlist_node(guc->capture,
coredump->snapshot.matched_node);
coredump->snapshot.matched_node = new;
}
}
break;
}
}
/*
* xe_guc_capture_put_matched_nodes - Cleanup macthed nodes
* @guc: The GuC object
*
* Free matched node and all nodes with the equal guc_id from
* GuC captured outlist
*/
void xe_guc_capture_put_matched_nodes(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_devcoredump *devcoredump = &xe->devcoredump;
struct __guc_capture_parsed_output *n = devcoredump->snapshot.matched_node;
if (n) {
guc_capture_remove_stale_matches_from_list(guc->capture, n);
guc_capture_free_outlist_node(guc->capture, n);
devcoredump->snapshot.matched_node = NULL;
}
}
/*
* xe_guc_capture_steered_list_init - Init steering register list
* @guc: The GuC object
*
* Init steering register list for GuC register capture, create pre-alloc node
*/
void xe_guc_capture_steered_list_init(struct xe_guc *guc)
{
/*
* For certain engine classes, there are slice and subslice
* level registers requiring steering. We allocate and populate
* these based on hw config and add it as an extension list at
* the end of the pre-populated render list.
*/
guc_capture_alloc_steered_lists(guc);
check_guc_capture_size(guc);
guc_capture_create_prealloc_nodes(guc);
}
/*
* xe_guc_capture_init - Init for GuC register capture
* @guc: The GuC object
*
* Init for GuC register capture, alloc memory for capture data structure.
*
* Returns: 0 if success.
* -ENOMEM if out of memory
*/
int xe_guc_capture_init(struct xe_guc *guc)
{
guc->capture = drmm_kzalloc(guc_to_drm(guc), sizeof(*guc->capture), GFP_KERNEL);
if (!guc->capture)
return -ENOMEM;
guc->capture->reglists = guc_capture_get_device_reglist(guc_to_xe(guc));
INIT_LIST_HEAD(&guc->capture->outlist);
INIT_LIST_HEAD(&guc->capture->cachelist);
return 0;
}