809 lines
26 KiB
C
809 lines
26 KiB
C
|
// SPDX-License-Identifier: MIT
|
||
|
/*
|
||
|
* Copyright © 2022 Intel Corporation
|
||
|
*/
|
||
|
|
||
|
#include "xe_gt_mcr.h"
|
||
|
|
||
|
#include "regs/xe_gt_regs.h"
|
||
|
#include "xe_assert.h"
|
||
|
#include "xe_gt.h"
|
||
|
#include "xe_gt_printk.h"
|
||
|
#include "xe_gt_topology.h"
|
||
|
#include "xe_gt_types.h"
|
||
|
#include "xe_guc_hwconfig.h"
|
||
|
#include "xe_mmio.h"
|
||
|
#include "xe_sriov.h"
|
||
|
|
||
|
/**
|
||
|
* DOC: GT Multicast/Replicated (MCR) Register Support
|
||
|
*
|
||
|
* Some GT registers are designed as "multicast" or "replicated" registers:
|
||
|
* multiple instances of the same register share a single MMIO offset. MCR
|
||
|
* registers are generally used when the hardware needs to potentially track
|
||
|
* independent values of a register per hardware unit (e.g., per-subslice,
|
||
|
* per-L3bank, etc.). The specific types of replication that exist vary
|
||
|
* per-platform.
|
||
|
*
|
||
|
* MMIO accesses to MCR registers are controlled according to the settings
|
||
|
* programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR
|
||
|
* registers can be done in either multicast (a single write updates all
|
||
|
* instances of the register to the same value) or unicast (a write updates only
|
||
|
* one specific instance) form. Reads of MCR registers always operate in a
|
||
|
* unicast manner regardless of how the multicast/unicast bit is set in
|
||
|
* MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is
|
||
|
* referred to as "steering."
|
||
|
*
|
||
|
* If MCR register operations are steered toward a hardware unit that is
|
||
|
* fused off or currently powered down due to power gating, the MMIO operation
|
||
|
* is "terminated" by the hardware. Terminated read operations will return a
|
||
|
* value of zero and terminated unicast write operations will be silently
|
||
|
* ignored. During device initialization, the goal of the various
|
||
|
* ``init_steering_*()`` functions is to apply the platform-specific rules for
|
||
|
* each MCR register type to identify a steering target that will select a
|
||
|
* non-terminated instance.
|
||
|
*
|
||
|
* MCR registers are not available on Virtual Function (VF).
|
||
|
*/
|
||
|
|
||
|
#define STEER_SEMAPHORE XE_REG(0xFD0)
|
||
|
|
||
|
static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
|
||
|
{
|
||
|
return reg_mcr.__reg;
|
||
|
}
|
||
|
|
||
|
enum {
|
||
|
MCR_OP_READ,
|
||
|
MCR_OP_WRITE
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
|
||
|
{ 0x00B100, 0x00B3FF },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
|
||
|
{ 0x008C80, 0x008CFF },
|
||
|
{ 0x00B100, 0x00B3FF },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* Although the bspec lists more "MSLICE" ranges than shown here, some of those
|
||
|
* are of a "GAM" subclass that has special rules and doesn't need to be
|
||
|
* included here.
|
||
|
*/
|
||
|
static const struct xe_mmio_range xehp_mslice_steering_table[] = {
|
||
|
{ 0x00DD00, 0x00DDFF },
|
||
|
{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xehp_lncf_steering_table[] = {
|
||
|
{ 0x00B000, 0x00B0FF },
|
||
|
{ 0x00D880, 0x00D8FF },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
/*
|
||
|
* We have several types of MCR registers where steering to (0,0) will always
|
||
|
* provide us with a non-terminated value. We'll stick them all in the same
|
||
|
* table for simplicity.
|
||
|
*/
|
||
|
static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
|
||
|
{ 0x004000, 0x004AFF }, /* HALF-BSLICE */
|
||
|
{ 0x008800, 0x00887F }, /* CC */
|
||
|
{ 0x008A80, 0x008AFF }, /* TILEPSMI */
|
||
|
{ 0x00B000, 0x00B0FF }, /* HALF-BSLICE */
|
||
|
{ 0x00B100, 0x00B3FF }, /* L3BANK */
|
||
|
{ 0x00C800, 0x00CFFF }, /* HALF-BSLICE */
|
||
|
{ 0x00D800, 0x00D8FF }, /* HALF-BSLICE */
|
||
|
{ 0x00DD00, 0x00DDFF }, /* BSLICE */
|
||
|
{ 0x00E900, 0x00E9FF }, /* HALF-BSLICE */
|
||
|
{ 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */
|
||
|
{ 0x00F000, 0x00FFFF }, /* HALF-BSLICE */
|
||
|
{ 0x024180, 0x0241FF }, /* HALF-BSLICE */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
|
||
|
{ 0x000B00, 0x000BFF }, /* SQIDI */
|
||
|
{ 0x001000, 0x001FFF }, /* SQIDI */
|
||
|
{ 0x004000, 0x0048FF }, /* GAM */
|
||
|
{ 0x008700, 0x0087FF }, /* SQIDI */
|
||
|
{ 0x00B000, 0x00B0FF }, /* NODE */
|
||
|
{ 0x00C800, 0x00CFFF }, /* GAM */
|
||
|
{ 0x00D880, 0x00D8FF }, /* NODE */
|
||
|
{ 0x00DD00, 0x00DDFF }, /* OAAL2 */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
|
||
|
{ 0x00B100, 0x00B3FF },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xelp_dss_steering_table[] = {
|
||
|
{ 0x008150, 0x00815F },
|
||
|
{ 0x009520, 0x00955F },
|
||
|
{ 0x00DE80, 0x00E8FF },
|
||
|
{ 0x024A00, 0x024A7F },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
/* DSS steering is used for GSLICE ranges as well */
|
||
|
static const struct xe_mmio_range xehp_dss_steering_table[] = {
|
||
|
{ 0x005200, 0x0052FF }, /* GSLICE */
|
||
|
{ 0x005400, 0x007FFF }, /* GSLICE */
|
||
|
{ 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
|
||
|
{ 0x008D00, 0x008DFF }, /* DSS */
|
||
|
{ 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
||
|
{ 0x009680, 0x0096FF }, /* DSS */
|
||
|
{ 0x00D800, 0x00D87F }, /* GSLICE */
|
||
|
{ 0x00DC00, 0x00DCFF }, /* GSLICE */
|
||
|
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */
|
||
|
{ 0x017000, 0x017FFF }, /* GSLICE */
|
||
|
{ 0x024A00, 0x024A7F }, /* DSS */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
/* DSS steering is used for COMPUTE ranges as well */
|
||
|
static const struct xe_mmio_range xehpc_dss_steering_table[] = {
|
||
|
{ 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
|
||
|
{ 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
||
|
{ 0x009680, 0x0096FF }, /* DSS */
|
||
|
{ 0x00DC00, 0x00DCFF }, /* COMPUTE */
|
||
|
{ 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
/* DSS steering is used for SLICE ranges as well */
|
||
|
static const struct xe_mmio_range xelpg_dss_steering_table[] = {
|
||
|
{ 0x005200, 0x0052FF }, /* SLICE */
|
||
|
{ 0x005500, 0x007FFF }, /* SLICE */
|
||
|
{ 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
|
||
|
{ 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
||
|
{ 0x009680, 0x0096FF }, /* DSS */
|
||
|
{ 0x00D800, 0x00D87F }, /* SLICE */
|
||
|
{ 0x00DC00, 0x00DCFF }, /* SLICE */
|
||
|
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
|
||
|
{ 0x393200, 0x39323F },
|
||
|
{ 0x393400, 0x3934FF },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range dg2_implicit_steering_table[] = {
|
||
|
{ 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */
|
||
|
{ 0x001000, 0x001FFF }, /* SF (SQIDI replication) */
|
||
|
{ 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */
|
||
|
{ 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */
|
||
|
{ 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */
|
||
|
{ 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
|
||
|
{ 0x005200, 0x0052FF }, /* SLICE */
|
||
|
{ 0x005500, 0x007FFF }, /* SLICE */
|
||
|
{ 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
|
||
|
{ 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
||
|
{ 0x009680, 0x0096FF }, /* DSS */
|
||
|
{ 0x00D800, 0x00D87F }, /* SLICE */
|
||
|
{ 0x00DC00, 0x00DCFF }, /* SLICE */
|
||
|
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
|
||
|
{ 0x00E980, 0x00E9FF }, /* SLICE */
|
||
|
{ 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
|
||
|
{ 0x000B00, 0x000BFF },
|
||
|
{ 0x001000, 0x001FFF },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
|
||
|
{ 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */
|
||
|
{ 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */
|
||
|
{ 0x00B000, 0x00B3FF }, /* NODE, L3BANK */
|
||
|
{ 0x00C800, 0x00CFFF }, /* GAM */
|
||
|
{ 0x00D880, 0x00D8FF }, /* NODE */
|
||
|
{ 0x00DD00, 0x00DDFF }, /* MEMPIPE */
|
||
|
{ 0x00E900, 0x00E97F }, /* MEMPIPE */
|
||
|
{ 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */
|
||
|
{ 0x013400, 0x0135FF }, /* MEMPIPE */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
|
||
|
{ 0x388160, 0x38817F },
|
||
|
{ 0x389480, 0x3894CF },
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
|
||
|
{ 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */
|
||
|
{ 0x384900, 0x384AFF }, /* GAM */
|
||
|
{ 0x389560, 0x3895FF }, /* MEDIAINF */
|
||
|
{ 0x38B600, 0x38B8FF }, /* L3BANK */
|
||
|
{ 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */
|
||
|
{ 0x38F000, 0x38F0FF }, /* GAM */
|
||
|
{ 0x393C00, 0x393C7F }, /* MEDIAINF */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static const struct xe_mmio_range xe3lpm_instance0_steering_table[] = {
|
||
|
{ 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */
|
||
|
{ 0x384900, 0x384AFF }, /* GAM */
|
||
|
{ 0x389560, 0x3895FF }, /* MEDIAINF */
|
||
|
{ 0x38B600, 0x38B8FF }, /* L3BANK */
|
||
|
{ 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */
|
||
|
{ 0x38D0D0, 0x38F0FF }, /* MEDIAINF, GAM */
|
||
|
{ 0x393C00, 0x393C7F }, /* MEDIAINF */
|
||
|
{},
|
||
|
};
|
||
|
|
||
|
static void init_steering_l3bank(struct xe_gt *gt)
|
||
|
{
|
||
|
struct xe_mmio *mmio = >->mmio;
|
||
|
|
||
|
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
|
||
|
u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
|
||
|
xe_mmio_read32(mmio, MIRROR_FUSE3));
|
||
|
u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
|
||
|
xe_mmio_read32(mmio, XEHP_FUSE4));
|
||
|
|
||
|
/*
|
||
|
* Group selects mslice, instance selects bank within mslice.
|
||
|
* Bank 0 is always valid _except_ when the bank mask is 010b.
|
||
|
*/
|
||
|
gt->steering[L3BANK].group_target = __ffs(mslice_mask);
|
||
|
gt->steering[L3BANK].instance_target =
|
||
|
bank_mask & BIT(0) ? 0 : 2;
|
||
|
} else if (gt_to_xe(gt)->info.platform == XE_DG2) {
|
||
|
u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
|
||
|
xe_mmio_read32(mmio, MIRROR_FUSE3));
|
||
|
u32 bank = __ffs(mslice_mask) * 8;
|
||
|
|
||
|
/*
|
||
|
* Like mslice registers, look for a valid mslice and steer to
|
||
|
* the first L3BANK of that quad. Access to the Nth L3 bank is
|
||
|
* split between the first bits of group and instance
|
||
|
*/
|
||
|
gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
|
||
|
gt->steering[L3BANK].instance_target = bank & 0x3;
|
||
|
} else {
|
||
|
u32 fuse = REG_FIELD_GET(L3BANK_MASK,
|
||
|
~xe_mmio_read32(mmio, MIRROR_FUSE3));
|
||
|
|
||
|
gt->steering[L3BANK].group_target = 0; /* unused */
|
||
|
gt->steering[L3BANK].instance_target = __ffs(fuse);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void init_steering_mslice(struct xe_gt *gt)
|
||
|
{
|
||
|
u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
|
||
|
xe_mmio_read32(>->mmio, MIRROR_FUSE3));
|
||
|
|
||
|
/*
|
||
|
* mslice registers are valid (not terminated) if either the meml3
|
||
|
* associated with the mslice is present, or at least one DSS associated
|
||
|
* with the mslice is present. There will always be at least one meml3
|
||
|
* so we can just use that to find a non-terminated mslice and ignore
|
||
|
* the DSS fusing.
|
||
|
*/
|
||
|
gt->steering[MSLICE].group_target = __ffs(mask);
|
||
|
gt->steering[MSLICE].instance_target = 0; /* unused */
|
||
|
|
||
|
/*
|
||
|
* LNCF termination is also based on mslice presence, so we'll set
|
||
|
* it up here. Either LNCF within a non-terminated mslice will work,
|
||
|
* so we just always pick LNCF 0 here.
|
||
|
*/
|
||
|
gt->steering[LNCF].group_target = __ffs(mask) << 1;
|
||
|
gt->steering[LNCF].instance_target = 0; /* unused */
|
||
|
}
|
||
|
|
||
|
static unsigned int dss_per_group(struct xe_gt *gt)
|
||
|
{
|
||
|
struct xe_guc *guc = >->uc.guc;
|
||
|
u32 max_slices = 0, max_subslices = 0;
|
||
|
int ret;
|
||
|
|
||
|
/*
|
||
|
* Try to query the GuC's hwconfig table for the maximum number of
|
||
|
* slices and subslices. These don't reflect the platform's actual
|
||
|
* slice/DSS counts, just the physical layout by which we should
|
||
|
* determine the steering targets. On older platforms with older GuC
|
||
|
* firmware releases it's possible that these attributes may not be
|
||
|
* included in the table, so we can always fall back to the old
|
||
|
* hardcoded layouts.
|
||
|
*/
|
||
|
#define HWCONFIG_ATTR_MAX_SLICES 1
|
||
|
#define HWCONFIG_ATTR_MAX_SUBSLICES 70
|
||
|
|
||
|
ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES,
|
||
|
&max_slices);
|
||
|
if (ret < 0 || max_slices == 0)
|
||
|
goto fallback;
|
||
|
|
||
|
ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES,
|
||
|
&max_subslices);
|
||
|
if (ret < 0 || max_subslices == 0)
|
||
|
goto fallback;
|
||
|
|
||
|
return DIV_ROUND_UP(max_subslices, max_slices);
|
||
|
|
||
|
fallback:
|
||
|
xe_gt_dbg(gt, "GuC hwconfig cannot provide dss/slice; using typical fallback values\n");
|
||
|
if (gt_to_xe(gt)->info.platform == XE_PVC)
|
||
|
return 8;
|
||
|
else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250)
|
||
|
return 4;
|
||
|
else
|
||
|
return 6;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS
|
||
|
* @gt: GT structure
|
||
|
* @dss: DSS ID to obtain steering for
|
||
|
* @group: pointer to storage for steering group ID
|
||
|
* @instance: pointer to storage for steering instance ID
|
||
|
*/
|
||
|
void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance)
|
||
|
{
|
||
|
xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS);
|
||
|
|
||
|
*group = dss / gt->steering_dss_per_grp;
|
||
|
*instance = dss % gt->steering_dss_per_grp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_steering_info_to_dss_id - Get DSS ID from group/instance steering
|
||
|
* @gt: GT structure
|
||
|
* @group: steering group ID
|
||
|
* @instance: steering instance ID
|
||
|
*
|
||
|
* Return: the coverted DSS id.
|
||
|
*/
|
||
|
u32 xe_gt_mcr_steering_info_to_dss_id(struct xe_gt *gt, u16 group, u16 instance)
|
||
|
{
|
||
|
return group * dss_per_group(gt) + instance;
|
||
|
}
|
||
|
|
||
|
static void init_steering_dss(struct xe_gt *gt)
|
||
|
{
|
||
|
gt->steering_dss_per_grp = dss_per_group(gt);
|
||
|
|
||
|
xe_gt_mcr_get_dss_steering(gt,
|
||
|
min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
|
||
|
xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)),
|
||
|
>->steering[DSS].group_target,
|
||
|
>->steering[DSS].instance_target);
|
||
|
}
|
||
|
|
||
|
static void init_steering_oaddrm(struct xe_gt *gt)
|
||
|
{
|
||
|
/*
|
||
|
* First instance is only terminated if the entire first media slice
|
||
|
* is absent (i.e., no VCS0 or VECS0).
|
||
|
*/
|
||
|
if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
|
||
|
gt->steering[OADDRM].group_target = 0;
|
||
|
else
|
||
|
gt->steering[OADDRM].group_target = 1;
|
||
|
|
||
|
gt->steering[OADDRM].instance_target = 0; /* unused */
|
||
|
}
|
||
|
|
||
|
static void init_steering_sqidi_psmi(struct xe_gt *gt)
|
||
|
{
|
||
|
u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
|
||
|
xe_mmio_read32(>->mmio, MIRROR_FUSE3));
|
||
|
u32 select = __ffs(mask);
|
||
|
|
||
|
gt->steering[SQIDI_PSMI].group_target = select >> 1;
|
||
|
gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
|
||
|
}
|
||
|
|
||
|
static void init_steering_inst0(struct xe_gt *gt)
|
||
|
{
|
||
|
gt->steering[INSTANCE0].group_target = 0; /* unused */
|
||
|
gt->steering[INSTANCE0].instance_target = 0; /* unused */
|
||
|
}
|
||
|
|
||
|
static const struct {
|
||
|
const char *name;
|
||
|
void (*init)(struct xe_gt *gt);
|
||
|
} xe_steering_types[] = {
|
||
|
[L3BANK] = { "L3BANK", init_steering_l3bank },
|
||
|
[MSLICE] = { "MSLICE", init_steering_mslice },
|
||
|
[LNCF] = { "LNCF", NULL }, /* initialized by mslice init */
|
||
|
[DSS] = { "DSS", init_steering_dss },
|
||
|
[OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm },
|
||
|
[SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi },
|
||
|
[INSTANCE0] = { "INSTANCE 0", init_steering_inst0 },
|
||
|
[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_init_early - Early initialization of the MCR support
|
||
|
* @gt: GT structure
|
||
|
*
|
||
|
* Perform early software only initialization of the MCR lock to allow
|
||
|
* the synchronization on accessing the STEER_SEMAPHORE register and
|
||
|
* use the xe_gt_mcr_multicast_write() function.
|
||
|
*/
|
||
|
void xe_gt_mcr_init_early(struct xe_gt *gt)
|
||
|
{
|
||
|
BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
|
||
|
BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
|
||
|
|
||
|
spin_lock_init(>->mcr_lock);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_init - Normal initialization of the MCR support
|
||
|
* @gt: GT structure
|
||
|
*
|
||
|
* Perform normal initialization of the MCR for all usages.
|
||
|
*/
|
||
|
void xe_gt_mcr_init(struct xe_gt *gt)
|
||
|
{
|
||
|
struct xe_device *xe = gt_to_xe(gt);
|
||
|
|
||
|
if (IS_SRIOV_VF(xe))
|
||
|
return;
|
||
|
|
||
|
if (gt->info.type == XE_GT_TYPE_MEDIA) {
|
||
|
drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
|
||
|
|
||
|
if (MEDIA_VER(xe) >= 30) {
|
||
|
gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
|
||
|
gt->steering[INSTANCE0].ranges = xe3lpm_instance0_steering_table;
|
||
|
} else if (MEDIA_VERx100(xe) >= 1301) {
|
||
|
gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
|
||
|
gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
|
||
|
} else {
|
||
|
gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
|
||
|
}
|
||
|
} else {
|
||
|
if (GRAPHICS_VER(xe) >= 20) {
|
||
|
gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
|
||
|
gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
|
||
|
gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
|
||
|
} else if (GRAPHICS_VERx100(xe) >= 1270) {
|
||
|
gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
|
||
|
gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
|
||
|
gt->steering[DSS].ranges = xelpg_dss_steering_table;
|
||
|
} else if (xe->info.platform == XE_PVC) {
|
||
|
gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
|
||
|
gt->steering[DSS].ranges = xehpc_dss_steering_table;
|
||
|
} else if (xe->info.platform == XE_DG2) {
|
||
|
gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
|
||
|
gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
|
||
|
gt->steering[LNCF].ranges = xehp_lncf_steering_table;
|
||
|
gt->steering[DSS].ranges = xehp_dss_steering_table;
|
||
|
gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
|
||
|
} else {
|
||
|
gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
|
||
|
gt->steering[DSS].ranges = xelp_dss_steering_table;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Select non-terminated steering target for each type */
|
||
|
for (int i = 0; i < NUM_STEERING_TYPES; i++)
|
||
|
if (gt->steering[i].ranges && xe_steering_types[i].init)
|
||
|
xe_steering_types[i].init(gt);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
|
||
|
* @gt: GT structure
|
||
|
*
|
||
|
* Some register ranges don't need to have their steering control registers
|
||
|
* changed on each access - it's sufficient to set them once on initialization.
|
||
|
* This function sets those registers for each platform *
|
||
|
*/
|
||
|
void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
|
||
|
{
|
||
|
struct xe_device *xe = gt_to_xe(gt);
|
||
|
|
||
|
if (IS_SRIOV_VF(xe))
|
||
|
return;
|
||
|
|
||
|
if (xe->info.platform == XE_DG2) {
|
||
|
u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
|
||
|
REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
|
||
|
|
||
|
xe_mmio_write32(>->mmio, MCFG_MCR_SELECTOR, steer_val);
|
||
|
xe_mmio_write32(>->mmio, SF_MCR_SELECTOR, steer_val);
|
||
|
/*
|
||
|
* For GAM registers, all reads should be directed to instance 1
|
||
|
* (unicast reads against other instances are not allowed),
|
||
|
* and instance 1 is already the hardware's default steering
|
||
|
* target, which we never change
|
||
|
*/
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* xe_gt_mcr_get_nonterminated_steering - find group/instance values that
|
||
|
* will steer a register to a non-terminated instance
|
||
|
* @gt: GT structure
|
||
|
* @reg: register for which the steering is required
|
||
|
* @group: return variable for group steering
|
||
|
* @instance: return variable for instance steering
|
||
|
*
|
||
|
* This function returns a group/instance pair that is guaranteed to work for
|
||
|
* read steering of the given register. Note that a value will be returned even
|
||
|
* if the register is not replicated and therefore does not actually require
|
||
|
* steering.
|
||
|
*
|
||
|
* Returns true if the caller should steer to the @group/@instance values
|
||
|
* returned. Returns false if the caller need not perform any steering
|
||
|
*/
|
||
|
bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
|
||
|
struct xe_reg_mcr reg_mcr,
|
||
|
u8 *group, u8 *instance)
|
||
|
{
|
||
|
const struct xe_reg reg = to_xe_reg(reg_mcr);
|
||
|
const struct xe_mmio_range *implicit_ranges;
|
||
|
|
||
|
for (int type = 0; type < IMPLICIT_STEERING; type++) {
|
||
|
if (!gt->steering[type].ranges)
|
||
|
continue;
|
||
|
|
||
|
for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
|
||
|
if (xe_mmio_in_range(>->mmio, >->steering[type].ranges[i], reg)) {
|
||
|
*group = gt->steering[type].group_target;
|
||
|
*instance = gt->steering[type].instance_target;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
|
||
|
if (implicit_ranges)
|
||
|
for (int i = 0; implicit_ranges[i].end > 0; i++)
|
||
|
if (xe_mmio_in_range(>->mmio, &implicit_ranges[i], reg))
|
||
|
return false;
|
||
|
|
||
|
/*
|
||
|
* Not found in a steering table and not a register with implicit
|
||
|
* steering. Just steer to 0/0 as a guess and raise a warning.
|
||
|
*/
|
||
|
drm_WARN(>_to_xe(gt)->drm, true,
|
||
|
"Did not find MCR register %#x in any MCR steering table\n",
|
||
|
reg.addr);
|
||
|
*group = 0;
|
||
|
*instance = 0;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Obtain exclusive access to MCR steering. On MTL and beyond we also need
|
||
|
* to synchronize with external clients (e.g., firmware), so a semaphore
|
||
|
* register will also need to be taken.
|
||
|
*/
|
||
|
static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock)
|
||
|
{
|
||
|
struct xe_device *xe = gt_to_xe(gt);
|
||
|
int ret = 0;
|
||
|
|
||
|
spin_lock(>->mcr_lock);
|
||
|
|
||
|
/*
|
||
|
* Starting with MTL we also need to grab a semaphore register
|
||
|
* to synchronize with external agents (e.g., firmware) that now
|
||
|
* shares the same steering control register. The semaphore is obtained
|
||
|
* when a read to the relevant register returns 1.
|
||
|
*/
|
||
|
if (GRAPHICS_VERx100(xe) >= 1270)
|
||
|
ret = xe_mmio_wait32(>->mmio, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
|
||
|
true);
|
||
|
|
||
|
drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
|
||
|
}
|
||
|
|
||
|
static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock)
|
||
|
{
|
||
|
/* Release hardware semaphore - this is done by writing 1 to the register */
|
||
|
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
|
||
|
xe_mmio_write32(>->mmio, STEER_SEMAPHORE, 0x1);
|
||
|
|
||
|
spin_unlock(>->mcr_lock);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Access a register with specific MCR steering
|
||
|
*
|
||
|
* Caller needs to make sure the relevant forcewake wells are up.
|
||
|
*/
|
||
|
static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
|
||
|
u8 rw_flag, int group, int instance, u32 value)
|
||
|
{
|
||
|
const struct xe_reg reg = to_xe_reg(reg_mcr);
|
||
|
struct xe_mmio *mmio = >->mmio;
|
||
|
struct xe_reg steer_reg;
|
||
|
u32 steer_val, val = 0;
|
||
|
|
||
|
lockdep_assert_held(>->mcr_lock);
|
||
|
|
||
|
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
|
||
|
steer_reg = MTL_MCR_SELECTOR;
|
||
|
steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
|
||
|
REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
|
||
|
} else {
|
||
|
steer_reg = MCR_SELECTOR;
|
||
|
steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
|
||
|
REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Always leave the hardware in multicast mode when doing reads and only
|
||
|
* change it to unicast mode when doing writes of a specific instance.
|
||
|
*
|
||
|
* The setting of the multicast/unicast bit usually wouldn't matter for
|
||
|
* read operations (which always return the value from a single register
|
||
|
* instance regardless of how that bit is set), but some platforms may
|
||
|
* have workarounds requiring us to remain in multicast mode for reads,
|
||
|
* e.g. Wa_22013088509 on PVC. There's no real downside to this, so
|
||
|
* we'll just go ahead and do so on all platforms; we'll only clear the
|
||
|
* multicast bit from the mask when explicitly doing a write operation.
|
||
|
*
|
||
|
* No need to save old steering reg value.
|
||
|
*/
|
||
|
if (rw_flag == MCR_OP_READ)
|
||
|
steer_val |= MCR_MULTICAST;
|
||
|
|
||
|
xe_mmio_write32(mmio, steer_reg, steer_val);
|
||
|
|
||
|
if (rw_flag == MCR_OP_READ)
|
||
|
val = xe_mmio_read32(mmio, reg);
|
||
|
else
|
||
|
xe_mmio_write32(mmio, reg, value);
|
||
|
|
||
|
/*
|
||
|
* If we turned off the multicast bit (during a write) we're required
|
||
|
* to turn it back on before finishing. The group and instance values
|
||
|
* don't matter since they'll be re-programmed on the next MCR
|
||
|
* operation.
|
||
|
*/
|
||
|
if (rw_flag == MCR_OP_WRITE)
|
||
|
xe_mmio_write32(mmio, steer_reg, MCR_MULTICAST);
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
|
||
|
* @gt: GT structure
|
||
|
* @reg_mcr: register to read
|
||
|
*
|
||
|
* Reads a GT MCR register. The read will be steered to a non-terminated
|
||
|
* instance (i.e., one that isn't fused off or powered down by power gating).
|
||
|
* This function assumes the caller is already holding any necessary forcewake
|
||
|
* domains.
|
||
|
*
|
||
|
* Returns the value from a non-terminated instance of @reg.
|
||
|
*/
|
||
|
u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
|
||
|
{
|
||
|
const struct xe_reg reg = to_xe_reg(reg_mcr);
|
||
|
u8 group, instance;
|
||
|
u32 val;
|
||
|
bool steer;
|
||
|
|
||
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
||
|
|
||
|
steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
|
||
|
&group, &instance);
|
||
|
|
||
|
if (steer) {
|
||
|
mcr_lock(gt);
|
||
|
val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
|
||
|
group, instance, 0);
|
||
|
mcr_unlock(gt);
|
||
|
} else {
|
||
|
val = xe_mmio_read32(>->mmio, reg);
|
||
|
}
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_unicast_read - read a specific instance of an MCR register
|
||
|
* @gt: GT structure
|
||
|
* @reg_mcr: the MCR register to read
|
||
|
* @group: the MCR group
|
||
|
* @instance: the MCR instance
|
||
|
*
|
||
|
* Returns the value read from an MCR register after steering toward a specific
|
||
|
* group/instance.
|
||
|
*/
|
||
|
u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
|
||
|
struct xe_reg_mcr reg_mcr,
|
||
|
int group, int instance)
|
||
|
{
|
||
|
u32 val;
|
||
|
|
||
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
||
|
|
||
|
mcr_lock(gt);
|
||
|
val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
|
||
|
mcr_unlock(gt);
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_unicast_write - write a specific instance of an MCR register
|
||
|
* @gt: GT structure
|
||
|
* @reg_mcr: the MCR register to write
|
||
|
* @value: value to write
|
||
|
* @group: the MCR group
|
||
|
* @instance: the MCR instance
|
||
|
*
|
||
|
* Write an MCR register in unicast mode after steering toward a specific
|
||
|
* group/instance.
|
||
|
*/
|
||
|
void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
|
||
|
u32 value, int group, int instance)
|
||
|
{
|
||
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
||
|
|
||
|
mcr_lock(gt);
|
||
|
rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
|
||
|
mcr_unlock(gt);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
|
||
|
* @gt: GT structure
|
||
|
* @reg_mcr: the MCR register to write
|
||
|
* @value: value to write
|
||
|
*
|
||
|
* Write an MCR register in multicast mode to update all instances.
|
||
|
*/
|
||
|
void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
|
||
|
u32 value)
|
||
|
{
|
||
|
struct xe_reg reg = to_xe_reg(reg_mcr);
|
||
|
|
||
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
||
|
|
||
|
/*
|
||
|
* Synchronize with any unicast operations. Once we have exclusive
|
||
|
* access, the MULTICAST bit should already be set, so there's no need
|
||
|
* to touch the steering register.
|
||
|
*/
|
||
|
mcr_lock(gt);
|
||
|
xe_mmio_write32(>->mmio, reg, value);
|
||
|
mcr_unlock(gt);
|
||
|
}
|
||
|
|
||
|
void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
|
||
|
{
|
||
|
for (int i = 0; i < NUM_STEERING_TYPES; i++) {
|
||
|
if (gt->steering[i].ranges) {
|
||
|
drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
|
||
|
xe_steering_types[i].name,
|
||
|
gt->steering[i].group_target,
|
||
|
gt->steering[i].instance_target);
|
||
|
for (int j = 0; gt->steering[i].ranges[j].end; j++)
|
||
|
drm_printf(p, "\t0x%06x - 0x%06x\n",
|
||
|
gt->steering[i].ranges[j].start,
|
||
|
gt->steering[i].ranges[j].end);
|
||
|
}
|
||
|
}
|
||
|
}
|