1032 lines
25 KiB
C
1032 lines
25 KiB
C
|
// SPDX-License-Identifier: MIT
|
||
|
/*
|
||
|
* Copyright © 2021 Intel Corporation
|
||
|
*/
|
||
|
|
||
|
#include "xe_device.h"
|
||
|
|
||
|
#include <linux/aperture.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/fault-inject.h>
|
||
|
#include <linux/units.h>
|
||
|
|
||
|
#include <drm/drm_atomic_helper.h>
|
||
|
#include <drm/drm_client.h>
|
||
|
#include <drm/drm_gem_ttm_helper.h>
|
||
|
#include <drm/drm_ioctl.h>
|
||
|
#include <drm/drm_managed.h>
|
||
|
#include <drm/drm_print.h>
|
||
|
#include <uapi/drm/xe_drm.h>
|
||
|
|
||
|
#include "display/xe_display.h"
|
||
|
#include "instructions/xe_gpu_commands.h"
|
||
|
#include "regs/xe_gt_regs.h"
|
||
|
#include "regs/xe_regs.h"
|
||
|
#include "xe_bo.h"
|
||
|
#include "xe_debugfs.h"
|
||
|
#include "xe_devcoredump.h"
|
||
|
#include "xe_dma_buf.h"
|
||
|
#include "xe_drm_client.h"
|
||
|
#include "xe_drv.h"
|
||
|
#include "xe_exec.h"
|
||
|
#include "xe_exec_queue.h"
|
||
|
#include "xe_force_wake.h"
|
||
|
#include "xe_ggtt.h"
|
||
|
#include "xe_gsc_proxy.h"
|
||
|
#include "xe_gt.h"
|
||
|
#include "xe_gt_mcr.h"
|
||
|
#include "xe_gt_printk.h"
|
||
|
#include "xe_gt_sriov_vf.h"
|
||
|
#include "xe_guc.h"
|
||
|
#include "xe_hw_engine_group.h"
|
||
|
#include "xe_hwmon.h"
|
||
|
#include "xe_irq.h"
|
||
|
#include "xe_memirq.h"
|
||
|
#include "xe_mmio.h"
|
||
|
#include "xe_module.h"
|
||
|
#include "xe_observation.h"
|
||
|
#include "xe_pat.h"
|
||
|
#include "xe_pcode.h"
|
||
|
#include "xe_pm.h"
|
||
|
#include "xe_query.h"
|
||
|
#include "xe_sriov.h"
|
||
|
#include "xe_tile.h"
|
||
|
#include "xe_ttm_stolen_mgr.h"
|
||
|
#include "xe_ttm_sys_mgr.h"
|
||
|
#include "xe_vm.h"
|
||
|
#include "xe_vram.h"
|
||
|
#include "xe_wait_user_fence.h"
|
||
|
#include "xe_wa.h"
|
||
|
|
||
|
#include <generated/xe_wa_oob.h>
|
||
|
|
||
|
static int xe_file_open(struct drm_device *dev, struct drm_file *file)
|
||
|
{
|
||
|
struct xe_device *xe = to_xe_device(dev);
|
||
|
struct xe_drm_client *client;
|
||
|
struct xe_file *xef;
|
||
|
int ret = -ENOMEM;
|
||
|
struct task_struct *task = NULL;
|
||
|
|
||
|
xef = kzalloc(sizeof(*xef), GFP_KERNEL);
|
||
|
if (!xef)
|
||
|
return ret;
|
||
|
|
||
|
client = xe_drm_client_alloc();
|
||
|
if (!client) {
|
||
|
kfree(xef);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
xef->drm = file;
|
||
|
xef->client = client;
|
||
|
xef->xe = xe;
|
||
|
|
||
|
mutex_init(&xef->vm.lock);
|
||
|
xa_init_flags(&xef->vm.xa, XA_FLAGS_ALLOC1);
|
||
|
|
||
|
mutex_init(&xef->exec_queue.lock);
|
||
|
xa_init_flags(&xef->exec_queue.xa, XA_FLAGS_ALLOC1);
|
||
|
|
||
|
file->driver_priv = xef;
|
||
|
kref_init(&xef->refcount);
|
||
|
|
||
|
task = get_pid_task(rcu_access_pointer(file->pid), PIDTYPE_PID);
|
||
|
if (task) {
|
||
|
xef->process_name = kstrdup(task->comm, GFP_KERNEL);
|
||
|
xef->pid = task->pid;
|
||
|
put_task_struct(task);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void xe_file_destroy(struct kref *ref)
|
||
|
{
|
||
|
struct xe_file *xef = container_of(ref, struct xe_file, refcount);
|
||
|
|
||
|
xa_destroy(&xef->exec_queue.xa);
|
||
|
mutex_destroy(&xef->exec_queue.lock);
|
||
|
xa_destroy(&xef->vm.xa);
|
||
|
mutex_destroy(&xef->vm.lock);
|
||
|
|
||
|
xe_drm_client_put(xef->client);
|
||
|
kfree(xef->process_name);
|
||
|
kfree(xef);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_file_get() - Take a reference to the xe file object
|
||
|
* @xef: Pointer to the xe file
|
||
|
*
|
||
|
* Anyone with a pointer to xef must take a reference to the xe file
|
||
|
* object using this call.
|
||
|
*
|
||
|
* Return: xe file pointer
|
||
|
*/
|
||
|
struct xe_file *xe_file_get(struct xe_file *xef)
|
||
|
{
|
||
|
kref_get(&xef->refcount);
|
||
|
return xef;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_file_put() - Drop a reference to the xe file object
|
||
|
* @xef: Pointer to the xe file
|
||
|
*
|
||
|
* Used to drop reference to the xef object
|
||
|
*/
|
||
|
void xe_file_put(struct xe_file *xef)
|
||
|
{
|
||
|
kref_put(&xef->refcount, xe_file_destroy);
|
||
|
}
|
||
|
|
||
|
static void xe_file_close(struct drm_device *dev, struct drm_file *file)
|
||
|
{
|
||
|
struct xe_device *xe = to_xe_device(dev);
|
||
|
struct xe_file *xef = file->driver_priv;
|
||
|
struct xe_vm *vm;
|
||
|
struct xe_exec_queue *q;
|
||
|
unsigned long idx;
|
||
|
|
||
|
xe_pm_runtime_get(xe);
|
||
|
|
||
|
/*
|
||
|
* No need for exec_queue.lock here as there is no contention for it
|
||
|
* when FD is closing as IOCTLs presumably can't be modifying the
|
||
|
* xarray. Taking exec_queue.lock here causes undue dependency on
|
||
|
* vm->lock taken during xe_exec_queue_kill().
|
||
|
*/
|
||
|
xa_for_each(&xef->exec_queue.xa, idx, q) {
|
||
|
if (q->vm && q->hwe->hw_engine_group)
|
||
|
xe_hw_engine_group_del_exec_queue(q->hwe->hw_engine_group, q);
|
||
|
xe_exec_queue_kill(q);
|
||
|
xe_exec_queue_put(q);
|
||
|
}
|
||
|
xa_for_each(&xef->vm.xa, idx, vm)
|
||
|
xe_vm_close_and_put(vm);
|
||
|
|
||
|
xe_file_put(xef);
|
||
|
|
||
|
xe_pm_runtime_put(xe);
|
||
|
}
|
||
|
|
||
|
static const struct drm_ioctl_desc xe_ioctls[] = {
|
||
|
DRM_IOCTL_DEF_DRV(XE_DEVICE_QUERY, xe_query_ioctl, DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_GEM_CREATE, xe_gem_create_ioctl, DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_GEM_MMAP_OFFSET, xe_gem_mmap_offset_ioctl,
|
||
|
DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_VM_CREATE, xe_vm_create_ioctl, DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_VM_DESTROY, xe_vm_destroy_ioctl, DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_VM_BIND, xe_vm_bind_ioctl, DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_EXEC, xe_exec_ioctl, DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_CREATE, xe_exec_queue_create_ioctl,
|
||
|
DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_DESTROY, xe_exec_queue_destroy_ioctl,
|
||
|
DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_EXEC_QUEUE_GET_PROPERTY, xe_exec_queue_get_property_ioctl,
|
||
|
DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_WAIT_USER_FENCE, xe_wait_user_fence_ioctl,
|
||
|
DRM_RENDER_ALLOW),
|
||
|
DRM_IOCTL_DEF_DRV(XE_OBSERVATION, xe_observation_ioctl, DRM_RENDER_ALLOW),
|
||
|
};
|
||
|
|
||
|
static long xe_drm_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
struct drm_file *file_priv = file->private_data;
|
||
|
struct xe_device *xe = to_xe_device(file_priv->minor->dev);
|
||
|
long ret;
|
||
|
|
||
|
if (xe_device_wedged(xe))
|
||
|
return -ECANCELED;
|
||
|
|
||
|
ret = xe_pm_runtime_get_ioctl(xe);
|
||
|
if (ret >= 0)
|
||
|
ret = drm_ioctl(file, cmd, arg);
|
||
|
xe_pm_runtime_put(xe);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_COMPAT
|
||
|
static long xe_drm_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
||
|
{
|
||
|
struct drm_file *file_priv = file->private_data;
|
||
|
struct xe_device *xe = to_xe_device(file_priv->minor->dev);
|
||
|
long ret;
|
||
|
|
||
|
if (xe_device_wedged(xe))
|
||
|
return -ECANCELED;
|
||
|
|
||
|
ret = xe_pm_runtime_get_ioctl(xe);
|
||
|
if (ret >= 0)
|
||
|
ret = drm_compat_ioctl(file, cmd, arg);
|
||
|
xe_pm_runtime_put(xe);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
#else
|
||
|
/* similarly to drm_compat_ioctl, let's it be assigned to .compat_ioct unconditionally */
|
||
|
#define xe_drm_compat_ioctl NULL
|
||
|
#endif
|
||
|
|
||
|
static const struct file_operations xe_driver_fops = {
|
||
|
.owner = THIS_MODULE,
|
||
|
.open = drm_open,
|
||
|
.release = drm_release_noglobal,
|
||
|
.unlocked_ioctl = xe_drm_ioctl,
|
||
|
.mmap = drm_gem_mmap,
|
||
|
.poll = drm_poll,
|
||
|
.read = drm_read,
|
||
|
.compat_ioctl = xe_drm_compat_ioctl,
|
||
|
.llseek = noop_llseek,
|
||
|
#ifdef CONFIG_PROC_FS
|
||
|
.show_fdinfo = drm_show_fdinfo,
|
||
|
#endif
|
||
|
.fop_flags = FOP_UNSIGNED_OFFSET,
|
||
|
};
|
||
|
|
||
|
static struct drm_driver driver = {
|
||
|
/* Don't use MTRRs here; the Xserver or userspace app should
|
||
|
* deal with them for Intel hardware.
|
||
|
*/
|
||
|
.driver_features =
|
||
|
DRIVER_GEM |
|
||
|
DRIVER_RENDER | DRIVER_SYNCOBJ |
|
||
|
DRIVER_SYNCOBJ_TIMELINE | DRIVER_GEM_GPUVA,
|
||
|
.open = xe_file_open,
|
||
|
.postclose = xe_file_close,
|
||
|
|
||
|
.gem_prime_import = xe_gem_prime_import,
|
||
|
|
||
|
.dumb_create = xe_bo_dumb_create,
|
||
|
.dumb_map_offset = drm_gem_ttm_dumb_map_offset,
|
||
|
#ifdef CONFIG_PROC_FS
|
||
|
.show_fdinfo = xe_drm_client_fdinfo,
|
||
|
#endif
|
||
|
.ioctls = xe_ioctls,
|
||
|
.num_ioctls = ARRAY_SIZE(xe_ioctls),
|
||
|
.fops = &xe_driver_fops,
|
||
|
.name = DRIVER_NAME,
|
||
|
.desc = DRIVER_DESC,
|
||
|
.date = DRIVER_DATE,
|
||
|
.major = DRIVER_MAJOR,
|
||
|
.minor = DRIVER_MINOR,
|
||
|
.patchlevel = DRIVER_PATCHLEVEL,
|
||
|
};
|
||
|
|
||
|
static void xe_device_destroy(struct drm_device *dev, void *dummy)
|
||
|
{
|
||
|
struct xe_device *xe = to_xe_device(dev);
|
||
|
|
||
|
if (xe->preempt_fence_wq)
|
||
|
destroy_workqueue(xe->preempt_fence_wq);
|
||
|
|
||
|
if (xe->ordered_wq)
|
||
|
destroy_workqueue(xe->ordered_wq);
|
||
|
|
||
|
if (xe->unordered_wq)
|
||
|
destroy_workqueue(xe->unordered_wq);
|
||
|
|
||
|
if (xe->destroy_wq)
|
||
|
destroy_workqueue(xe->destroy_wq);
|
||
|
|
||
|
ttm_device_fini(&xe->ttm);
|
||
|
}
|
||
|
|
||
|
struct xe_device *xe_device_create(struct pci_dev *pdev,
|
||
|
const struct pci_device_id *ent)
|
||
|
{
|
||
|
struct xe_device *xe;
|
||
|
int err;
|
||
|
|
||
|
xe_display_driver_set_hooks(&driver);
|
||
|
|
||
|
err = aperture_remove_conflicting_pci_devices(pdev, driver.name);
|
||
|
if (err)
|
||
|
return ERR_PTR(err);
|
||
|
|
||
|
xe = devm_drm_dev_alloc(&pdev->dev, &driver, struct xe_device, drm);
|
||
|
if (IS_ERR(xe))
|
||
|
return xe;
|
||
|
|
||
|
err = ttm_device_init(&xe->ttm, &xe_ttm_funcs, xe->drm.dev,
|
||
|
xe->drm.anon_inode->i_mapping,
|
||
|
xe->drm.vma_offset_manager, false, false);
|
||
|
if (WARN_ON(err))
|
||
|
goto err;
|
||
|
|
||
|
err = drmm_add_action_or_reset(&xe->drm, xe_device_destroy, NULL);
|
||
|
if (err)
|
||
|
goto err;
|
||
|
|
||
|
xe->info.devid = pdev->device;
|
||
|
xe->info.revid = pdev->revision;
|
||
|
xe->info.force_execlist = xe_modparam.force_execlist;
|
||
|
|
||
|
spin_lock_init(&xe->irq.lock);
|
||
|
|
||
|
init_waitqueue_head(&xe->ufence_wq);
|
||
|
|
||
|
init_rwsem(&xe->usm.lock);
|
||
|
|
||
|
xa_init_flags(&xe->usm.asid_to_vm, XA_FLAGS_ALLOC);
|
||
|
|
||
|
if (IS_ENABLED(CONFIG_DRM_XE_DEBUG)) {
|
||
|
/* Trigger a large asid and an early asid wrap. */
|
||
|
u32 asid;
|
||
|
|
||
|
BUILD_BUG_ON(XE_MAX_ASID < 2);
|
||
|
err = xa_alloc_cyclic(&xe->usm.asid_to_vm, &asid, NULL,
|
||
|
XA_LIMIT(XE_MAX_ASID - 2, XE_MAX_ASID - 1),
|
||
|
&xe->usm.next_asid, GFP_KERNEL);
|
||
|
drm_WARN_ON(&xe->drm, err);
|
||
|
if (err >= 0)
|
||
|
xa_erase(&xe->usm.asid_to_vm, asid);
|
||
|
}
|
||
|
|
||
|
spin_lock_init(&xe->pinned.lock);
|
||
|
INIT_LIST_HEAD(&xe->pinned.kernel_bo_present);
|
||
|
INIT_LIST_HEAD(&xe->pinned.external_vram);
|
||
|
INIT_LIST_HEAD(&xe->pinned.evicted);
|
||
|
|
||
|
xe->preempt_fence_wq = alloc_ordered_workqueue("xe-preempt-fence-wq",
|
||
|
WQ_MEM_RECLAIM);
|
||
|
xe->ordered_wq = alloc_ordered_workqueue("xe-ordered-wq", 0);
|
||
|
xe->unordered_wq = alloc_workqueue("xe-unordered-wq", 0, 0);
|
||
|
xe->destroy_wq = alloc_workqueue("xe-destroy-wq", 0, 0);
|
||
|
if (!xe->ordered_wq || !xe->unordered_wq ||
|
||
|
!xe->preempt_fence_wq || !xe->destroy_wq) {
|
||
|
/*
|
||
|
* Cleanup done in xe_device_destroy via
|
||
|
* drmm_add_action_or_reset register above
|
||
|
*/
|
||
|
drm_err(&xe->drm, "Failed to allocate xe workqueues\n");
|
||
|
err = -ENOMEM;
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
err = xe_display_create(xe);
|
||
|
if (WARN_ON(err))
|
||
|
goto err;
|
||
|
|
||
|
return xe;
|
||
|
|
||
|
err:
|
||
|
return ERR_PTR(err);
|
||
|
}
|
||
|
ALLOW_ERROR_INJECTION(xe_device_create, ERRNO); /* See xe_pci_probe() */
|
||
|
|
||
|
static bool xe_driver_flr_disabled(struct xe_device *xe)
|
||
|
{
|
||
|
return xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL_PROTECTED) & DRIVERINT_FLR_DIS;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* The driver-initiated FLR is the highest level of reset that we can trigger
|
||
|
* from within the driver. It is different from the PCI FLR in that it doesn't
|
||
|
* fully reset the SGUnit and doesn't modify the PCI config space and therefore
|
||
|
* it doesn't require a re-enumeration of the PCI BARs. However, the
|
||
|
* driver-initiated FLR does still cause a reset of both GT and display and a
|
||
|
* memory wipe of local and stolen memory, so recovery would require a full HW
|
||
|
* re-init and saving/restoring (or re-populating) the wiped memory. Since we
|
||
|
* perform the FLR as the very last action before releasing access to the HW
|
||
|
* during the driver release flow, we don't attempt recovery at all, because
|
||
|
* if/when a new instance of i915 is bound to the device it will do a full
|
||
|
* re-init anyway.
|
||
|
*/
|
||
|
static void __xe_driver_flr(struct xe_device *xe)
|
||
|
{
|
||
|
const unsigned int flr_timeout = 3 * MICRO; /* specs recommend a 3s wait */
|
||
|
struct xe_mmio *mmio = xe_root_tile_mmio(xe);
|
||
|
int ret;
|
||
|
|
||
|
drm_dbg(&xe->drm, "Triggering Driver-FLR\n");
|
||
|
|
||
|
/*
|
||
|
* Make sure any pending FLR requests have cleared by waiting for the
|
||
|
* FLR trigger bit to go to zero. Also clear GU_DEBUG's DRIVERFLR_STATUS
|
||
|
* to make sure it's not still set from a prior attempt (it's a write to
|
||
|
* clear bit).
|
||
|
* Note that we should never be in a situation where a previous attempt
|
||
|
* is still pending (unless the HW is totally dead), but better to be
|
||
|
* safe in case something unexpected happens
|
||
|
*/
|
||
|
ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
|
||
|
if (ret) {
|
||
|
drm_err(&xe->drm, "Driver-FLR-prepare wait for ready failed! %d\n", ret);
|
||
|
return;
|
||
|
}
|
||
|
xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
|
||
|
|
||
|
/* Trigger the actual Driver-FLR */
|
||
|
xe_mmio_rmw32(mmio, GU_CNTL, 0, DRIVERFLR);
|
||
|
|
||
|
/* Wait for hardware teardown to complete */
|
||
|
ret = xe_mmio_wait32(mmio, GU_CNTL, DRIVERFLR, 0, flr_timeout, NULL, false);
|
||
|
if (ret) {
|
||
|
drm_err(&xe->drm, "Driver-FLR-teardown wait completion failed! %d\n", ret);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Wait for hardware/firmware re-init to complete */
|
||
|
ret = xe_mmio_wait32(mmio, GU_DEBUG, DRIVERFLR_STATUS, DRIVERFLR_STATUS,
|
||
|
flr_timeout, NULL, false);
|
||
|
if (ret) {
|
||
|
drm_err(&xe->drm, "Driver-FLR-reinit wait completion failed! %d\n", ret);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Clear sticky completion status */
|
||
|
xe_mmio_write32(mmio, GU_DEBUG, DRIVERFLR_STATUS);
|
||
|
}
|
||
|
|
||
|
static void xe_driver_flr(struct xe_device *xe)
|
||
|
{
|
||
|
if (xe_driver_flr_disabled(xe)) {
|
||
|
drm_info_once(&xe->drm, "BIOS Disabled Driver-FLR\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
__xe_driver_flr(xe);
|
||
|
}
|
||
|
|
||
|
static void xe_driver_flr_fini(void *arg)
|
||
|
{
|
||
|
struct xe_device *xe = arg;
|
||
|
|
||
|
if (xe->needs_flr_on_fini)
|
||
|
xe_driver_flr(xe);
|
||
|
}
|
||
|
|
||
|
static void xe_device_sanitize(void *arg)
|
||
|
{
|
||
|
struct xe_device *xe = arg;
|
||
|
struct xe_gt *gt;
|
||
|
u8 id;
|
||
|
|
||
|
for_each_gt(gt, xe, id)
|
||
|
xe_gt_sanitize(gt);
|
||
|
}
|
||
|
|
||
|
static int xe_set_dma_info(struct xe_device *xe)
|
||
|
{
|
||
|
unsigned int mask_size = xe->info.dma_mask_size;
|
||
|
int err;
|
||
|
|
||
|
dma_set_max_seg_size(xe->drm.dev, xe_sg_segment_size(xe->drm.dev));
|
||
|
|
||
|
err = dma_set_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
|
||
|
if (err)
|
||
|
goto mask_err;
|
||
|
|
||
|
err = dma_set_coherent_mask(xe->drm.dev, DMA_BIT_MASK(mask_size));
|
||
|
if (err)
|
||
|
goto mask_err;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
mask_err:
|
||
|
drm_err(&xe->drm, "Can't set DMA mask/consistent mask (%d)\n", err);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static bool verify_lmem_ready(struct xe_device *xe)
|
||
|
{
|
||
|
u32 val = xe_mmio_read32(xe_root_tile_mmio(xe), GU_CNTL) & LMEM_INIT;
|
||
|
|
||
|
return !!val;
|
||
|
}
|
||
|
|
||
|
static int wait_for_lmem_ready(struct xe_device *xe)
|
||
|
{
|
||
|
unsigned long timeout, start;
|
||
|
|
||
|
if (!IS_DGFX(xe))
|
||
|
return 0;
|
||
|
|
||
|
if (IS_SRIOV_VF(xe))
|
||
|
return 0;
|
||
|
|
||
|
if (verify_lmem_ready(xe))
|
||
|
return 0;
|
||
|
|
||
|
drm_dbg(&xe->drm, "Waiting for lmem initialization\n");
|
||
|
|
||
|
start = jiffies;
|
||
|
timeout = start + msecs_to_jiffies(60 * 1000); /* 60 sec! */
|
||
|
|
||
|
do {
|
||
|
if (signal_pending(current))
|
||
|
return -EINTR;
|
||
|
|
||
|
/*
|
||
|
* The boot firmware initializes local memory and
|
||
|
* assesses its health. If memory training fails,
|
||
|
* the punit will have been instructed to keep the GT powered
|
||
|
* down.we won't be able to communicate with it
|
||
|
*
|
||
|
* If the status check is done before punit updates the register,
|
||
|
* it can lead to the system being unusable.
|
||
|
* use a timeout and defer the probe to prevent this.
|
||
|
*/
|
||
|
if (time_after(jiffies, timeout)) {
|
||
|
drm_dbg(&xe->drm, "lmem not initialized by firmware\n");
|
||
|
return -EPROBE_DEFER;
|
||
|
}
|
||
|
|
||
|
msleep(20);
|
||
|
|
||
|
} while (!verify_lmem_ready(xe));
|
||
|
|
||
|
drm_dbg(&xe->drm, "lmem ready after %ums",
|
||
|
jiffies_to_msecs(jiffies - start));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
ALLOW_ERROR_INJECTION(wait_for_lmem_ready, ERRNO); /* See xe_pci_probe() */
|
||
|
|
||
|
static void update_device_info(struct xe_device *xe)
|
||
|
{
|
||
|
/* disable features that are not available/applicable to VFs */
|
||
|
if (IS_SRIOV_VF(xe)) {
|
||
|
xe->info.probe_display = 0;
|
||
|
xe->info.has_heci_gscfi = 0;
|
||
|
xe->info.skip_guc_pc = 1;
|
||
|
xe->info.skip_pcode = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_device_probe_early: Device early probe
|
||
|
* @xe: xe device instance
|
||
|
*
|
||
|
* Initialize MMIO resources that don't require any
|
||
|
* knowledge about tile count. Also initialize pcode and
|
||
|
* check vram initialization on root tile.
|
||
|
*
|
||
|
* Return: 0 on success, error code on failure
|
||
|
*/
|
||
|
int xe_device_probe_early(struct xe_device *xe)
|
||
|
{
|
||
|
int err;
|
||
|
|
||
|
err = xe_mmio_init(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
xe_sriov_probe_early(xe);
|
||
|
|
||
|
update_device_info(xe);
|
||
|
|
||
|
err = xe_pcode_probe_early(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
err = wait_for_lmem_ready(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
xe->wedged.mode = xe_modparam.wedged_mode;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int probe_has_flat_ccs(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_gt *gt;
|
||
|
unsigned int fw_ref;
|
||
|
u32 reg;
|
||
|
|
||
|
/* Always enabled/disabled, no runtime check to do */
|
||
|
if (GRAPHICS_VER(xe) < 20 || !xe->info.has_flat_ccs)
|
||
|
return 0;
|
||
|
|
||
|
gt = xe_root_mmio_gt(xe);
|
||
|
|
||
|
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
|
||
|
if (!fw_ref)
|
||
|
return -ETIMEDOUT;
|
||
|
|
||
|
reg = xe_gt_mcr_unicast_read_any(gt, XE2_FLAT_CCS_BASE_RANGE_LOWER);
|
||
|
xe->info.has_flat_ccs = (reg & XE2_FLAT_CCS_ENABLE);
|
||
|
|
||
|
if (!xe->info.has_flat_ccs)
|
||
|
drm_dbg(&xe->drm,
|
||
|
"Flat CCS has been disabled in bios, May lead to performance impact");
|
||
|
|
||
|
xe_force_wake_put(gt_to_fw(gt), fw_ref);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int xe_device_probe(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_tile *tile;
|
||
|
struct xe_gt *gt;
|
||
|
int err;
|
||
|
u8 last_gt;
|
||
|
u8 id;
|
||
|
|
||
|
xe_pat_init_early(xe);
|
||
|
|
||
|
err = xe_sriov_init(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
xe->info.mem_region_mask = 1;
|
||
|
err = xe_display_init_nommio(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
err = xe_set_dma_info(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
err = xe_mmio_probe_tiles(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
xe_ttm_sys_mgr_init(xe);
|
||
|
|
||
|
for_each_gt(gt, xe, id) {
|
||
|
err = xe_gt_init_early(gt);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
/*
|
||
|
* Only after this point can GT-specific MMIO operations
|
||
|
* (including things like communication with the GuC)
|
||
|
* be performed.
|
||
|
*/
|
||
|
xe_gt_mmio_init(gt);
|
||
|
}
|
||
|
|
||
|
for_each_tile(tile, xe, id) {
|
||
|
if (IS_SRIOV_VF(xe)) {
|
||
|
xe_guc_comm_init_early(&tile->primary_gt->uc.guc);
|
||
|
err = xe_gt_sriov_vf_bootstrap(tile->primary_gt);
|
||
|
if (err)
|
||
|
return err;
|
||
|
err = xe_gt_sriov_vf_query_config(tile->primary_gt);
|
||
|
if (err)
|
||
|
return err;
|
||
|
}
|
||
|
err = xe_ggtt_init_early(tile->mem.ggtt);
|
||
|
if (err)
|
||
|
return err;
|
||
|
err = xe_memirq_init(&tile->memirq);
|
||
|
if (err)
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
for_each_gt(gt, xe, id) {
|
||
|
err = xe_gt_init_hwconfig(gt);
|
||
|
if (err)
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
err = xe_devcoredump_init(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
err = devm_add_action_or_reset(xe->drm.dev, xe_driver_flr_fini, xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
err = xe_display_init_noirq(xe);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
err = xe_irq_install(xe);
|
||
|
if (err)
|
||
|
goto err;
|
||
|
|
||
|
err = probe_has_flat_ccs(xe);
|
||
|
if (err)
|
||
|
goto err;
|
||
|
|
||
|
err = xe_vram_probe(xe);
|
||
|
if (err)
|
||
|
goto err;
|
||
|
|
||
|
for_each_tile(tile, xe, id) {
|
||
|
err = xe_tile_init_noalloc(tile);
|
||
|
if (err)
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
/* Allocate and map stolen after potential VRAM resize */
|
||
|
xe_ttm_stolen_mgr_init(xe);
|
||
|
|
||
|
/*
|
||
|
* Now that GT is initialized (TTM in particular),
|
||
|
* we can try to init display, and inherit the initial fb.
|
||
|
* This is the reason the first allocation needs to be done
|
||
|
* inside display.
|
||
|
*/
|
||
|
err = xe_display_init_noaccel(xe);
|
||
|
if (err)
|
||
|
goto err;
|
||
|
|
||
|
for_each_gt(gt, xe, id) {
|
||
|
last_gt = id;
|
||
|
|
||
|
err = xe_gt_init(gt);
|
||
|
if (err)
|
||
|
goto err_fini_gt;
|
||
|
}
|
||
|
|
||
|
xe_heci_gsc_init(xe);
|
||
|
|
||
|
err = xe_oa_init(xe);
|
||
|
if (err)
|
||
|
goto err_fini_gt;
|
||
|
|
||
|
err = xe_display_init(xe);
|
||
|
if (err)
|
||
|
goto err_fini_oa;
|
||
|
|
||
|
err = drm_dev_register(&xe->drm, 0);
|
||
|
if (err)
|
||
|
goto err_fini_display;
|
||
|
|
||
|
xe_display_register(xe);
|
||
|
|
||
|
xe_oa_register(xe);
|
||
|
|
||
|
xe_debugfs_register(xe);
|
||
|
|
||
|
xe_hwmon_register(xe);
|
||
|
|
||
|
for_each_gt(gt, xe, id)
|
||
|
xe_gt_sanitize_freq(gt);
|
||
|
|
||
|
return devm_add_action_or_reset(xe->drm.dev, xe_device_sanitize, xe);
|
||
|
|
||
|
err_fini_display:
|
||
|
xe_display_driver_remove(xe);
|
||
|
|
||
|
err_fini_oa:
|
||
|
xe_oa_fini(xe);
|
||
|
|
||
|
err_fini_gt:
|
||
|
for_each_gt(gt, xe, id) {
|
||
|
if (id < last_gt)
|
||
|
xe_gt_remove(gt);
|
||
|
else
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
err:
|
||
|
xe_display_fini(xe);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static void xe_device_remove_display(struct xe_device *xe)
|
||
|
{
|
||
|
xe_display_unregister(xe);
|
||
|
|
||
|
drm_dev_unplug(&xe->drm);
|
||
|
xe_display_driver_remove(xe);
|
||
|
}
|
||
|
|
||
|
void xe_device_remove(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_gt *gt;
|
||
|
u8 id;
|
||
|
|
||
|
xe_oa_unregister(xe);
|
||
|
|
||
|
xe_device_remove_display(xe);
|
||
|
|
||
|
xe_display_fini(xe);
|
||
|
|
||
|
xe_oa_fini(xe);
|
||
|
|
||
|
xe_heci_gsc_fini(xe);
|
||
|
|
||
|
for_each_gt(gt, xe, id)
|
||
|
xe_gt_remove(gt);
|
||
|
}
|
||
|
|
||
|
void xe_device_shutdown(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_gt *gt;
|
||
|
u8 id;
|
||
|
|
||
|
drm_dbg(&xe->drm, "Shutting down device\n");
|
||
|
|
||
|
if (xe_driver_flr_disabled(xe)) {
|
||
|
xe_display_pm_shutdown(xe);
|
||
|
|
||
|
xe_irq_suspend(xe);
|
||
|
|
||
|
for_each_gt(gt, xe, id)
|
||
|
xe_gt_shutdown(gt);
|
||
|
|
||
|
xe_display_pm_shutdown_late(xe);
|
||
|
} else {
|
||
|
/* BOOM! */
|
||
|
__xe_driver_flr(xe);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_device_wmb() - Device specific write memory barrier
|
||
|
* @xe: the &xe_device
|
||
|
*
|
||
|
* While wmb() is sufficient for a barrier if we use system memory, on discrete
|
||
|
* platforms with device memory we additionally need to issue a register write.
|
||
|
* Since it doesn't matter which register we write to, use the read-only VF_CAP
|
||
|
* register that is also marked as accessible by the VFs.
|
||
|
*/
|
||
|
void xe_device_wmb(struct xe_device *xe)
|
||
|
{
|
||
|
wmb();
|
||
|
if (IS_DGFX(xe))
|
||
|
xe_mmio_write32(xe_root_tile_mmio(xe), VF_CAP_REG, 0);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_device_td_flush() - Flush transient L3 cache entries
|
||
|
* @xe: The device
|
||
|
*
|
||
|
* Display engine has direct access to memory and is never coherent with L3/L4
|
||
|
* caches (or CPU caches), however KMD is responsible for specifically flushing
|
||
|
* transient L3 GPU cache entries prior to the flip sequence to ensure scanout
|
||
|
* can happen from such a surface without seeing corruption.
|
||
|
*
|
||
|
* Display surfaces can be tagged as transient by mapping it using one of the
|
||
|
* various L3:XD PAT index modes on Xe2.
|
||
|
*
|
||
|
* Note: On non-discrete xe2 platforms, like LNL, the entire L3 cache is flushed
|
||
|
* at the end of each submission via PIPE_CONTROL for compute/render, since SA
|
||
|
* Media is not coherent with L3 and we want to support render-vs-media
|
||
|
* usescases. For other engines like copy/blt the HW internally forces uncached
|
||
|
* behaviour, hence why we can skip the TDF on such platforms.
|
||
|
*/
|
||
|
void xe_device_td_flush(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_gt *gt;
|
||
|
unsigned int fw_ref;
|
||
|
u8 id;
|
||
|
|
||
|
if (!IS_DGFX(xe) || GRAPHICS_VER(xe) < 20)
|
||
|
return;
|
||
|
|
||
|
if (XE_WA(xe_root_mmio_gt(xe), 16023588340)) {
|
||
|
xe_device_l2_flush(xe);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
for_each_gt(gt, xe, id) {
|
||
|
if (xe_gt_is_media_type(gt))
|
||
|
continue;
|
||
|
|
||
|
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
|
||
|
if (!fw_ref)
|
||
|
return;
|
||
|
|
||
|
xe_mmio_write32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST);
|
||
|
/*
|
||
|
* FIXME: We can likely do better here with our choice of
|
||
|
* timeout. Currently we just assume the worst case, i.e. 150us,
|
||
|
* which is believed to be sufficient to cover the worst case
|
||
|
* scenario on current platforms if all cache entries are
|
||
|
* transient and need to be flushed..
|
||
|
*/
|
||
|
if (xe_mmio_wait32(>->mmio, XE2_TDF_CTRL, TRANSIENT_FLUSH_REQUEST, 0,
|
||
|
150, NULL, false))
|
||
|
xe_gt_err_once(gt, "TD flush timeout\n");
|
||
|
|
||
|
xe_force_wake_put(gt_to_fw(gt), fw_ref);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void xe_device_l2_flush(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_gt *gt;
|
||
|
unsigned int fw_ref;
|
||
|
|
||
|
gt = xe_root_mmio_gt(xe);
|
||
|
|
||
|
if (!XE_WA(gt, 16023588340))
|
||
|
return;
|
||
|
|
||
|
fw_ref = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
|
||
|
if (!fw_ref)
|
||
|
return;
|
||
|
|
||
|
spin_lock(>->global_invl_lock);
|
||
|
xe_mmio_write32(>->mmio, XE2_GLOBAL_INVAL, 0x1);
|
||
|
|
||
|
if (xe_mmio_wait32(>->mmio, XE2_GLOBAL_INVAL, 0x1, 0x0, 500, NULL, true))
|
||
|
xe_gt_err_once(gt, "Global invalidation timeout\n");
|
||
|
spin_unlock(>->global_invl_lock);
|
||
|
|
||
|
xe_force_wake_put(gt_to_fw(gt), fw_ref);
|
||
|
}
|
||
|
|
||
|
u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
|
||
|
{
|
||
|
return xe_device_has_flat_ccs(xe) ?
|
||
|
DIV_ROUND_UP_ULL(size, NUM_BYTES_PER_CCS_BYTE(xe)) : 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_device_assert_mem_access - Inspect the current runtime_pm state.
|
||
|
* @xe: xe device instance
|
||
|
*
|
||
|
* To be used before any kind of memory access. It will splat a debug warning
|
||
|
* if the device is currently sleeping. But it doesn't guarantee in any way
|
||
|
* that the device is going to remain awake. Xe PM runtime get and put
|
||
|
* functions might be added to the outer bound of the memory access, while
|
||
|
* this check is intended for inner usage to splat some warning if the worst
|
||
|
* case has just happened.
|
||
|
*/
|
||
|
void xe_device_assert_mem_access(struct xe_device *xe)
|
||
|
{
|
||
|
xe_assert(xe, !xe_pm_runtime_suspended(xe));
|
||
|
}
|
||
|
|
||
|
void xe_device_snapshot_print(struct xe_device *xe, struct drm_printer *p)
|
||
|
{
|
||
|
struct xe_gt *gt;
|
||
|
u8 id;
|
||
|
|
||
|
drm_printf(p, "PCI ID: 0x%04x\n", xe->info.devid);
|
||
|
drm_printf(p, "PCI revision: 0x%02x\n", xe->info.revid);
|
||
|
|
||
|
for_each_gt(gt, xe, id) {
|
||
|
drm_printf(p, "GT id: %u\n", id);
|
||
|
drm_printf(p, "\tTile: %u\n", gt->tile->id);
|
||
|
drm_printf(p, "\tType: %s\n",
|
||
|
gt->info.type == XE_GT_TYPE_MAIN ? "main" : "media");
|
||
|
drm_printf(p, "\tIP ver: %u.%u.%u\n",
|
||
|
REG_FIELD_GET(GMD_ID_ARCH_MASK, gt->info.gmdid),
|
||
|
REG_FIELD_GET(GMD_ID_RELEASE_MASK, gt->info.gmdid),
|
||
|
REG_FIELD_GET(GMD_ID_REVID, gt->info.gmdid));
|
||
|
drm_printf(p, "\tCS reference clock: %u\n", gt->info.reference_clock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
u64 xe_device_canonicalize_addr(struct xe_device *xe, u64 address)
|
||
|
{
|
||
|
return sign_extend64(address, xe->info.va_bits - 1);
|
||
|
}
|
||
|
|
||
|
u64 xe_device_uncanonicalize_addr(struct xe_device *xe, u64 address)
|
||
|
{
|
||
|
return address & GENMASK_ULL(xe->info.va_bits - 1, 0);
|
||
|
}
|
||
|
|
||
|
static void xe_device_wedged_fini(struct drm_device *drm, void *arg)
|
||
|
{
|
||
|
struct xe_device *xe = arg;
|
||
|
|
||
|
xe_pm_runtime_put(xe);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* xe_device_declare_wedged - Declare device wedged
|
||
|
* @xe: xe device instance
|
||
|
*
|
||
|
* This is a final state that can only be cleared with a mudule
|
||
|
* re-probe (unbind + bind).
|
||
|
* In this state every IOCTL will be blocked so the GT cannot be used.
|
||
|
* In general it will be called upon any critical error such as gt reset
|
||
|
* failure or guc loading failure.
|
||
|
* If xe.wedged module parameter is set to 2, this function will be called
|
||
|
* on every single execution timeout (a.k.a. GPU hang) right after devcoredump
|
||
|
* snapshot capture. In this mode, GT reset won't be attempted so the state of
|
||
|
* the issue is preserved for further debugging.
|
||
|
*/
|
||
|
void xe_device_declare_wedged(struct xe_device *xe)
|
||
|
{
|
||
|
struct xe_gt *gt;
|
||
|
u8 id;
|
||
|
|
||
|
if (xe->wedged.mode == 0) {
|
||
|
drm_dbg(&xe->drm, "Wedged mode is forcibly disabled\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
xe_pm_runtime_get_noresume(xe);
|
||
|
|
||
|
if (drmm_add_action_or_reset(&xe->drm, xe_device_wedged_fini, xe)) {
|
||
|
drm_err(&xe->drm, "Failed to register xe_device_wedged_fini clean-up. Although device is wedged.\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!atomic_xchg(&xe->wedged.flag, 1)) {
|
||
|
xe->needs_flr_on_fini = true;
|
||
|
drm_err(&xe->drm,
|
||
|
"CRITICAL: Xe has declared device %s as wedged.\n"
|
||
|
"IOCTLs and executions are blocked. Only a rebind may clear the failure\n"
|
||
|
"Please file a _new_ bug report at https://gitlab.freedesktop.org/drm/xe/kernel/issues/new\n",
|
||
|
dev_name(xe->drm.dev));
|
||
|
}
|
||
|
|
||
|
for_each_gt(gt, xe, id)
|
||
|
xe_gt_declare_wedged(gt);
|
||
|
}
|