770 lines
21 KiB
C
770 lines
21 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/* Copyright (C) 2015 - 2016 Thomas Körper, esd electronic system design gmbh
|
||
|
* Copyright (C) 2017 - 2023 Stefan Mätje, esd electronics gmbh
|
||
|
*/
|
||
|
|
||
|
#include "esdacc.h"
|
||
|
|
||
|
#include <linux/bitfield.h>
|
||
|
#include <linux/delay.h>
|
||
|
#include <linux/io.h>
|
||
|
#include <linux/ktime.h>
|
||
|
|
||
|
/* esdACC ID register layout */
|
||
|
#define ACC_ID_ID_MASK GENMASK(28, 0)
|
||
|
#define ACC_ID_EFF_FLAG BIT(29)
|
||
|
|
||
|
/* esdACC DLC register layout */
|
||
|
#define ACC_DLC_DLC_MASK GENMASK(3, 0)
|
||
|
#define ACC_DLC_RTR_FLAG BIT(4)
|
||
|
#define ACC_DLC_SSTX_FLAG BIT(24) /* Single Shot TX */
|
||
|
|
||
|
/* esdACC DLC in struct acc_bmmsg_rxtxdone::acc_dlc.len only! */
|
||
|
#define ACC_DLC_TXD_FLAG BIT(5)
|
||
|
|
||
|
/* ecc value of esdACC equals SJA1000's ECC register */
|
||
|
#define ACC_ECC_SEG 0x1f
|
||
|
#define ACC_ECC_DIR 0x20
|
||
|
#define ACC_ECC_BIT 0x00
|
||
|
#define ACC_ECC_FORM 0x40
|
||
|
#define ACC_ECC_STUFF 0x80
|
||
|
#define ACC_ECC_MASK 0xc0
|
||
|
|
||
|
/* esdACC Status Register bits. Unused bits not documented. */
|
||
|
#define ACC_REG_STATUS_MASK_STATUS_ES BIT(17)
|
||
|
#define ACC_REG_STATUS_MASK_STATUS_EP BIT(18)
|
||
|
#define ACC_REG_STATUS_MASK_STATUS_BS BIT(19)
|
||
|
|
||
|
/* esdACC Overview Module BM_IRQ_Mask register related defines */
|
||
|
/* Two bit wide command masks to mask or unmask a single core IRQ */
|
||
|
#define ACC_BM_IRQ_UNMASK BIT(0)
|
||
|
#define ACC_BM_IRQ_MASK (ACC_BM_IRQ_UNMASK << 1)
|
||
|
/* Command to unmask all IRQ sources. Created by shifting
|
||
|
* and oring the two bit wide ACC_BM_IRQ_UNMASK 16 times.
|
||
|
*/
|
||
|
#define ACC_BM_IRQ_UNMASK_ALL 0x55555555U
|
||
|
|
||
|
static void acc_resetmode_enter(struct acc_core *core)
|
||
|
{
|
||
|
acc_set_bits(core, ACC_CORE_OF_CTRL,
|
||
|
ACC_REG_CTRL_MASK_RESETMODE);
|
||
|
|
||
|
/* Read back reset mode bit to flush PCI write posting */
|
||
|
acc_resetmode_entered(core);
|
||
|
}
|
||
|
|
||
|
static void acc_resetmode_leave(struct acc_core *core)
|
||
|
{
|
||
|
acc_clear_bits(core, ACC_CORE_OF_CTRL,
|
||
|
ACC_REG_CTRL_MASK_RESETMODE);
|
||
|
|
||
|
/* Read back reset mode bit to flush PCI write posting */
|
||
|
acc_resetmode_entered(core);
|
||
|
}
|
||
|
|
||
|
static void acc_txq_put(struct acc_core *core, u32 acc_id, u32 acc_dlc,
|
||
|
const void *data)
|
||
|
{
|
||
|
acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_1,
|
||
|
*((const u32 *)(data + 4)));
|
||
|
acc_write32_noswap(core, ACC_CORE_OF_TXFIFO_DATA_0,
|
||
|
*((const u32 *)data));
|
||
|
acc_write32(core, ACC_CORE_OF_TXFIFO_DLC, acc_dlc);
|
||
|
/* CAN id must be written at last. This write starts TX. */
|
||
|
acc_write32(core, ACC_CORE_OF_TXFIFO_ID, acc_id);
|
||
|
}
|
||
|
|
||
|
static u8 acc_tx_fifo_next(struct acc_core *core, u8 tx_fifo_idx)
|
||
|
{
|
||
|
++tx_fifo_idx;
|
||
|
if (tx_fifo_idx >= core->tx_fifo_size)
|
||
|
tx_fifo_idx = 0U;
|
||
|
return tx_fifo_idx;
|
||
|
}
|
||
|
|
||
|
/* Convert timestamp from esdACC time stamp ticks to ns
|
||
|
*
|
||
|
* The conversion factor ts2ns from time stamp counts to ns is basically
|
||
|
* ts2ns = NSEC_PER_SEC / timestamp_frequency
|
||
|
*
|
||
|
* We handle here only a fixed timestamp frequency of 80MHz. The
|
||
|
* resulting ts2ns factor would be 12.5.
|
||
|
*
|
||
|
* At the end we multiply by 12 and add the half of the HW timestamp
|
||
|
* to get a multiplication by 12.5. This way any overflow is
|
||
|
* avoided until ktime_t itself overflows.
|
||
|
*/
|
||
|
#define ACC_TS_FACTOR (NSEC_PER_SEC / ACC_TS_FREQ_80MHZ)
|
||
|
#define ACC_TS_80MHZ_SHIFT 1
|
||
|
|
||
|
static ktime_t acc_ts2ktime(struct acc_ov *ov, u64 ts)
|
||
|
{
|
||
|
u64 ns;
|
||
|
|
||
|
ns = (ts * ACC_TS_FACTOR) + (ts >> ACC_TS_80MHZ_SHIFT);
|
||
|
|
||
|
return ns_to_ktime(ns);
|
||
|
}
|
||
|
|
||
|
#undef ACC_TS_FACTOR
|
||
|
#undef ACC_TS_80MHZ_SHIFT
|
||
|
|
||
|
void acc_init_ov(struct acc_ov *ov, struct device *dev)
|
||
|
{
|
||
|
u32 temp;
|
||
|
|
||
|
temp = acc_ov_read32(ov, ACC_OV_OF_VERSION);
|
||
|
ov->version = temp;
|
||
|
ov->features = (temp >> 16);
|
||
|
|
||
|
temp = acc_ov_read32(ov, ACC_OV_OF_INFO);
|
||
|
ov->total_cores = temp;
|
||
|
ov->active_cores = (temp >> 8);
|
||
|
|
||
|
ov->core_frequency = acc_ov_read32(ov, ACC_OV_OF_CANCORE_FREQ);
|
||
|
ov->timestamp_frequency = acc_ov_read32(ov, ACC_OV_OF_TS_FREQ_LO);
|
||
|
|
||
|
/* Depending on esdACC feature NEW_PSC enable the new prescaler
|
||
|
* or adjust core_frequency according to the implicit division by 2.
|
||
|
*/
|
||
|
if (ov->features & ACC_OV_REG_FEAT_MASK_NEW_PSC) {
|
||
|
acc_ov_set_bits(ov, ACC_OV_OF_MODE,
|
||
|
ACC_OV_REG_MODE_MASK_NEW_PSC_ENABLE);
|
||
|
} else {
|
||
|
ov->core_frequency /= 2;
|
||
|
}
|
||
|
|
||
|
dev_dbg(dev,
|
||
|
"esdACC v%u, freq: %u/%u, feat/strap: 0x%x/0x%x, cores: %u/%u\n",
|
||
|
ov->version, ov->core_frequency, ov->timestamp_frequency,
|
||
|
ov->features, acc_ov_read32(ov, ACC_OV_OF_INFO) >> 16,
|
||
|
ov->active_cores, ov->total_cores);
|
||
|
}
|
||
|
|
||
|
void acc_init_bm_ptr(struct acc_ov *ov, struct acc_core *cores, const void *mem)
|
||
|
{
|
||
|
unsigned int u;
|
||
|
|
||
|
/* DMA buffer layout as follows where N is the number of CAN cores
|
||
|
* implemented in the FPGA, i.e. N = ov->total_cores
|
||
|
*
|
||
|
* Section Layout Section size
|
||
|
* ----------------------------------------------
|
||
|
* FIFO Card/Overview ACC_CORE_DMABUF_SIZE
|
||
|
* FIFO Core0 ACC_CORE_DMABUF_SIZE
|
||
|
* ... ...
|
||
|
* FIFO CoreN ACC_CORE_DMABUF_SIZE
|
||
|
* irq_cnt Card/Overview sizeof(u32)
|
||
|
* irq_cnt Core0 sizeof(u32)
|
||
|
* ... ...
|
||
|
* irq_cnt CoreN sizeof(u32)
|
||
|
*/
|
||
|
ov->bmfifo.messages = mem;
|
||
|
ov->bmfifo.irq_cnt = mem + (ov->total_cores + 1U) * ACC_CORE_DMABUF_SIZE;
|
||
|
|
||
|
for (u = 0U; u < ov->active_cores; u++) {
|
||
|
struct acc_core *core = &cores[u];
|
||
|
|
||
|
core->bmfifo.messages = mem + (u + 1U) * ACC_CORE_DMABUF_SIZE;
|
||
|
core->bmfifo.irq_cnt = ov->bmfifo.irq_cnt + (u + 1U);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int acc_open(struct net_device *netdev)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(netdev);
|
||
|
struct acc_core *core = priv->core;
|
||
|
u32 tx_fifo_status;
|
||
|
u32 ctrl;
|
||
|
int err;
|
||
|
|
||
|
/* Retry to enter RESET mode if out of sync. */
|
||
|
if (priv->can.state != CAN_STATE_STOPPED) {
|
||
|
netdev_warn(netdev, "Entered %s() with bad can.state: %s\n",
|
||
|
__func__, can_get_state_str(priv->can.state));
|
||
|
acc_resetmode_enter(core);
|
||
|
priv->can.state = CAN_STATE_STOPPED;
|
||
|
}
|
||
|
|
||
|
err = open_candev(netdev);
|
||
|
if (err)
|
||
|
return err;
|
||
|
|
||
|
ctrl = ACC_REG_CTRL_MASK_IE_RXTX |
|
||
|
ACC_REG_CTRL_MASK_IE_TXERROR |
|
||
|
ACC_REG_CTRL_MASK_IE_ERRWARN |
|
||
|
ACC_REG_CTRL_MASK_IE_OVERRUN |
|
||
|
ACC_REG_CTRL_MASK_IE_ERRPASS;
|
||
|
|
||
|
if (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)
|
||
|
ctrl |= ACC_REG_CTRL_MASK_IE_BUSERR;
|
||
|
|
||
|
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
|
||
|
ctrl |= ACC_REG_CTRL_MASK_LOM;
|
||
|
|
||
|
acc_set_bits(core, ACC_CORE_OF_CTRL, ctrl);
|
||
|
|
||
|
acc_resetmode_leave(core);
|
||
|
priv->can.state = CAN_STATE_ERROR_ACTIVE;
|
||
|
|
||
|
/* Resync TX FIFO indices to HW state after (re-)start. */
|
||
|
tx_fifo_status = acc_read32(core, ACC_CORE_OF_TXFIFO_STATUS);
|
||
|
core->tx_fifo_head = tx_fifo_status & 0xff;
|
||
|
core->tx_fifo_tail = (tx_fifo_status >> 8) & 0xff;
|
||
|
|
||
|
netif_start_queue(netdev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int acc_close(struct net_device *netdev)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(netdev);
|
||
|
struct acc_core *core = priv->core;
|
||
|
|
||
|
acc_clear_bits(core, ACC_CORE_OF_CTRL,
|
||
|
ACC_REG_CTRL_MASK_IE_RXTX |
|
||
|
ACC_REG_CTRL_MASK_IE_TXERROR |
|
||
|
ACC_REG_CTRL_MASK_IE_ERRWARN |
|
||
|
ACC_REG_CTRL_MASK_IE_OVERRUN |
|
||
|
ACC_REG_CTRL_MASK_IE_ERRPASS |
|
||
|
ACC_REG_CTRL_MASK_IE_BUSERR);
|
||
|
|
||
|
netif_stop_queue(netdev);
|
||
|
acc_resetmode_enter(core);
|
||
|
priv->can.state = CAN_STATE_STOPPED;
|
||
|
|
||
|
/* Mark pending TX requests to be aborted after controller restart. */
|
||
|
acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff);
|
||
|
|
||
|
/* ACC_REG_CTRL_MASK_LOM is only accessible in RESET mode */
|
||
|
acc_clear_bits(core, ACC_CORE_OF_CTRL,
|
||
|
ACC_REG_CTRL_MASK_LOM);
|
||
|
|
||
|
close_candev(netdev);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
netdev_tx_t acc_start_xmit(struct sk_buff *skb, struct net_device *netdev)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(netdev);
|
||
|
struct acc_core *core = priv->core;
|
||
|
struct can_frame *cf = (struct can_frame *)skb->data;
|
||
|
u8 tx_fifo_head = core->tx_fifo_head;
|
||
|
int fifo_usage;
|
||
|
u32 acc_id;
|
||
|
u32 acc_dlc;
|
||
|
|
||
|
if (can_dropped_invalid_skb(netdev, skb))
|
||
|
return NETDEV_TX_OK;
|
||
|
|
||
|
/* Access core->tx_fifo_tail only once because it may be changed
|
||
|
* from the interrupt level.
|
||
|
*/
|
||
|
fifo_usage = tx_fifo_head - core->tx_fifo_tail;
|
||
|
if (fifo_usage < 0)
|
||
|
fifo_usage += core->tx_fifo_size;
|
||
|
|
||
|
if (fifo_usage >= core->tx_fifo_size - 1) {
|
||
|
netdev_err(core->netdev,
|
||
|
"BUG: TX ring full when queue awake!\n");
|
||
|
netif_stop_queue(netdev);
|
||
|
return NETDEV_TX_BUSY;
|
||
|
}
|
||
|
|
||
|
if (fifo_usage == core->tx_fifo_size - 2)
|
||
|
netif_stop_queue(netdev);
|
||
|
|
||
|
acc_dlc = can_get_cc_dlc(cf, priv->can.ctrlmode);
|
||
|
if (cf->can_id & CAN_RTR_FLAG)
|
||
|
acc_dlc |= ACC_DLC_RTR_FLAG;
|
||
|
if (priv->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT)
|
||
|
acc_dlc |= ACC_DLC_SSTX_FLAG;
|
||
|
|
||
|
if (cf->can_id & CAN_EFF_FLAG) {
|
||
|
acc_id = cf->can_id & CAN_EFF_MASK;
|
||
|
acc_id |= ACC_ID_EFF_FLAG;
|
||
|
} else {
|
||
|
acc_id = cf->can_id & CAN_SFF_MASK;
|
||
|
}
|
||
|
|
||
|
can_put_echo_skb(skb, netdev, core->tx_fifo_head, 0);
|
||
|
|
||
|
core->tx_fifo_head = acc_tx_fifo_next(core, tx_fifo_head);
|
||
|
|
||
|
acc_txq_put(core, acc_id, acc_dlc, cf->data);
|
||
|
|
||
|
return NETDEV_TX_OK;
|
||
|
}
|
||
|
|
||
|
int acc_get_berr_counter(const struct net_device *netdev,
|
||
|
struct can_berr_counter *bec)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(netdev);
|
||
|
u32 core_status = acc_read32(priv->core, ACC_CORE_OF_STATUS);
|
||
|
|
||
|
bec->txerr = (core_status >> 8) & 0xff;
|
||
|
bec->rxerr = core_status & 0xff;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int acc_set_mode(struct net_device *netdev, enum can_mode mode)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(netdev);
|
||
|
|
||
|
switch (mode) {
|
||
|
case CAN_MODE_START:
|
||
|
/* Paranoid FIFO index check. */
|
||
|
{
|
||
|
const u32 tx_fifo_status =
|
||
|
acc_read32(priv->core, ACC_CORE_OF_TXFIFO_STATUS);
|
||
|
const u8 hw_fifo_head = tx_fifo_status;
|
||
|
|
||
|
if (hw_fifo_head != priv->core->tx_fifo_head ||
|
||
|
hw_fifo_head != priv->core->tx_fifo_tail) {
|
||
|
netdev_warn(netdev,
|
||
|
"TX FIFO mismatch: T %2u H %2u; TFHW %#08x\n",
|
||
|
priv->core->tx_fifo_tail,
|
||
|
priv->core->tx_fifo_head,
|
||
|
tx_fifo_status);
|
||
|
}
|
||
|
}
|
||
|
acc_resetmode_leave(priv->core);
|
||
|
/* To leave the bus-off state the esdACC controller begins
|
||
|
* here a grace period where it counts 128 "idle conditions" (each
|
||
|
* of 11 consecutive recessive bits) on the bus as required
|
||
|
* by the CAN spec.
|
||
|
*
|
||
|
* During this time the TX FIFO may still contain already
|
||
|
* aborted "zombie" frames that are only drained from the FIFO
|
||
|
* at the end of the grace period.
|
||
|
*
|
||
|
* To not to interfere with this drain process we don't
|
||
|
* call netif_wake_queue() here. When the controller reaches
|
||
|
* the error-active state again, it informs us about that
|
||
|
* with an acc_bmmsg_errstatechange message. Then
|
||
|
* netif_wake_queue() is called from
|
||
|
* handle_core_msg_errstatechange() instead.
|
||
|
*/
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return -EOPNOTSUPP;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int acc_set_bittiming(struct net_device *netdev)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(netdev);
|
||
|
const struct can_bittiming *bt = &priv->can.bittiming;
|
||
|
u32 brp;
|
||
|
u32 btr;
|
||
|
|
||
|
if (priv->ov->features & ACC_OV_REG_FEAT_MASK_CANFD) {
|
||
|
u32 fbtr = 0;
|
||
|
|
||
|
netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n",
|
||
|
bt->brp, bt->prop_seg,
|
||
|
bt->phase_seg1, bt->phase_seg2, bt->sjw);
|
||
|
|
||
|
brp = FIELD_PREP(ACC_REG_BRP_FD_MASK_BRP, bt->brp - 1);
|
||
|
|
||
|
btr = FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1);
|
||
|
btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_TSEG2, bt->phase_seg2 - 1);
|
||
|
btr |= FIELD_PREP(ACC_REG_BTR_FD_MASK_SJW, bt->sjw - 1);
|
||
|
|
||
|
/* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */
|
||
|
acc_write32(priv->core, ACC_CORE_OF_BRP, brp);
|
||
|
acc_write32(priv->core, ACC_CORE_OF_BTR, btr);
|
||
|
|
||
|
netdev_dbg(netdev, "esdACC: BRP %u, NBTR 0x%08x, DBTR 0x%08x",
|
||
|
brp, btr, fbtr);
|
||
|
} else {
|
||
|
netdev_dbg(netdev, "bit timing: brp %u, prop %u, ph1 %u ph2 %u, sjw %u\n",
|
||
|
bt->brp, bt->prop_seg,
|
||
|
bt->phase_seg1, bt->phase_seg2, bt->sjw);
|
||
|
|
||
|
brp = FIELD_PREP(ACC_REG_BRP_CL_MASK_BRP, bt->brp - 1);
|
||
|
|
||
|
btr = FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG1, bt->phase_seg1 + bt->prop_seg - 1);
|
||
|
btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_TSEG2, bt->phase_seg2 - 1);
|
||
|
btr |= FIELD_PREP(ACC_REG_BTR_CL_MASK_SJW, bt->sjw - 1);
|
||
|
|
||
|
/* Keep order of accesses to ACC_CORE_OF_BRP and ACC_CORE_OF_BTR. */
|
||
|
acc_write32(priv->core, ACC_CORE_OF_BRP, brp);
|
||
|
acc_write32(priv->core, ACC_CORE_OF_BTR, btr);
|
||
|
|
||
|
netdev_dbg(netdev, "esdACC: BRP %u, BTR 0x%08x", brp, btr);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void handle_core_msg_rxtxdone(struct acc_core *core,
|
||
|
const struct acc_bmmsg_rxtxdone *msg)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(core->netdev);
|
||
|
struct net_device_stats *stats = &core->netdev->stats;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
if (msg->acc_dlc.len & ACC_DLC_TXD_FLAG) {
|
||
|
u8 tx_fifo_tail = core->tx_fifo_tail;
|
||
|
|
||
|
if (core->tx_fifo_head == tx_fifo_tail) {
|
||
|
netdev_warn(core->netdev,
|
||
|
"TX interrupt, but queue is empty!?\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* Direct access echo skb to attach HW time stamp. */
|
||
|
skb = priv->can.echo_skb[tx_fifo_tail];
|
||
|
if (skb) {
|
||
|
skb_hwtstamps(skb)->hwtstamp =
|
||
|
acc_ts2ktime(priv->ov, msg->ts);
|
||
|
}
|
||
|
|
||
|
stats->tx_packets++;
|
||
|
stats->tx_bytes += can_get_echo_skb(core->netdev, tx_fifo_tail,
|
||
|
NULL);
|
||
|
|
||
|
core->tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail);
|
||
|
|
||
|
netif_wake_queue(core->netdev);
|
||
|
|
||
|
} else {
|
||
|
struct can_frame *cf;
|
||
|
|
||
|
skb = alloc_can_skb(core->netdev, &cf);
|
||
|
if (!skb) {
|
||
|
stats->rx_dropped++;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
cf->can_id = msg->id & ACC_ID_ID_MASK;
|
||
|
if (msg->id & ACC_ID_EFF_FLAG)
|
||
|
cf->can_id |= CAN_EFF_FLAG;
|
||
|
|
||
|
can_frame_set_cc_len(cf, msg->acc_dlc.len & ACC_DLC_DLC_MASK,
|
||
|
priv->can.ctrlmode);
|
||
|
|
||
|
if (msg->acc_dlc.len & ACC_DLC_RTR_FLAG) {
|
||
|
cf->can_id |= CAN_RTR_FLAG;
|
||
|
} else {
|
||
|
memcpy(cf->data, msg->data, cf->len);
|
||
|
stats->rx_bytes += cf->len;
|
||
|
}
|
||
|
stats->rx_packets++;
|
||
|
|
||
|
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
|
||
|
|
||
|
netif_rx(skb);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void handle_core_msg_txabort(struct acc_core *core,
|
||
|
const struct acc_bmmsg_txabort *msg)
|
||
|
{
|
||
|
struct net_device_stats *stats = &core->netdev->stats;
|
||
|
u8 tx_fifo_tail = core->tx_fifo_tail;
|
||
|
u32 abort_mask = msg->abort_mask; /* u32 extend to avoid warnings later */
|
||
|
|
||
|
/* The abort_mask shows which frames were aborted in esdACC's FIFO. */
|
||
|
while (tx_fifo_tail != core->tx_fifo_head && (abort_mask)) {
|
||
|
const u32 tail_mask = (1U << tx_fifo_tail);
|
||
|
|
||
|
if (!(abort_mask & tail_mask))
|
||
|
break;
|
||
|
abort_mask &= ~tail_mask;
|
||
|
|
||
|
can_free_echo_skb(core->netdev, tx_fifo_tail, NULL);
|
||
|
stats->tx_dropped++;
|
||
|
stats->tx_aborted_errors++;
|
||
|
|
||
|
tx_fifo_tail = acc_tx_fifo_next(core, tx_fifo_tail);
|
||
|
}
|
||
|
core->tx_fifo_tail = tx_fifo_tail;
|
||
|
if (abort_mask)
|
||
|
netdev_warn(core->netdev, "Unhandled aborted messages\n");
|
||
|
|
||
|
if (!acc_resetmode_entered(core))
|
||
|
netif_wake_queue(core->netdev);
|
||
|
}
|
||
|
|
||
|
static void handle_core_msg_overrun(struct acc_core *core,
|
||
|
const struct acc_bmmsg_overrun *msg)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(core->netdev);
|
||
|
struct net_device_stats *stats = &core->netdev->stats;
|
||
|
struct can_frame *cf;
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
/* lost_cnt may be 0 if not supported by esdACC version */
|
||
|
if (msg->lost_cnt) {
|
||
|
stats->rx_errors += msg->lost_cnt;
|
||
|
stats->rx_over_errors += msg->lost_cnt;
|
||
|
} else {
|
||
|
stats->rx_errors++;
|
||
|
stats->rx_over_errors++;
|
||
|
}
|
||
|
|
||
|
skb = alloc_can_err_skb(core->netdev, &cf);
|
||
|
if (!skb)
|
||
|
return;
|
||
|
|
||
|
cf->can_id |= CAN_ERR_CRTL;
|
||
|
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
|
||
|
|
||
|
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
|
||
|
|
||
|
netif_rx(skb);
|
||
|
}
|
||
|
|
||
|
static void handle_core_msg_buserr(struct acc_core *core,
|
||
|
const struct acc_bmmsg_buserr *msg)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(core->netdev);
|
||
|
struct net_device_stats *stats = &core->netdev->stats;
|
||
|
struct can_frame *cf;
|
||
|
struct sk_buff *skb;
|
||
|
const u32 reg_status = msg->reg_status;
|
||
|
const u8 rxerr = reg_status;
|
||
|
const u8 txerr = (reg_status >> 8);
|
||
|
u8 can_err_prot_type = 0U;
|
||
|
|
||
|
priv->can.can_stats.bus_error++;
|
||
|
|
||
|
/* Error occurred during transmission? */
|
||
|
if (msg->ecc & ACC_ECC_DIR) {
|
||
|
stats->rx_errors++;
|
||
|
} else {
|
||
|
can_err_prot_type |= CAN_ERR_PROT_TX;
|
||
|
stats->tx_errors++;
|
||
|
}
|
||
|
/* Determine error type */
|
||
|
switch (msg->ecc & ACC_ECC_MASK) {
|
||
|
case ACC_ECC_BIT:
|
||
|
can_err_prot_type |= CAN_ERR_PROT_BIT;
|
||
|
break;
|
||
|
case ACC_ECC_FORM:
|
||
|
can_err_prot_type |= CAN_ERR_PROT_FORM;
|
||
|
break;
|
||
|
case ACC_ECC_STUFF:
|
||
|
can_err_prot_type |= CAN_ERR_PROT_STUFF;
|
||
|
break;
|
||
|
default:
|
||
|
can_err_prot_type |= CAN_ERR_PROT_UNSPEC;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
skb = alloc_can_err_skb(core->netdev, &cf);
|
||
|
if (!skb)
|
||
|
return;
|
||
|
|
||
|
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR | CAN_ERR_CNT;
|
||
|
|
||
|
/* Set protocol error type */
|
||
|
cf->data[2] = can_err_prot_type;
|
||
|
/* Set error location */
|
||
|
cf->data[3] = msg->ecc & ACC_ECC_SEG;
|
||
|
|
||
|
/* Insert CAN TX and RX error counters. */
|
||
|
cf->data[6] = txerr;
|
||
|
cf->data[7] = rxerr;
|
||
|
|
||
|
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
|
||
|
|
||
|
netif_rx(skb);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
handle_core_msg_errstatechange(struct acc_core *core,
|
||
|
const struct acc_bmmsg_errstatechange *msg)
|
||
|
{
|
||
|
struct acc_net_priv *priv = netdev_priv(core->netdev);
|
||
|
struct can_frame *cf = NULL;
|
||
|
struct sk_buff *skb;
|
||
|
const u32 reg_status = msg->reg_status;
|
||
|
const u8 rxerr = reg_status;
|
||
|
const u8 txerr = (reg_status >> 8);
|
||
|
enum can_state new_state;
|
||
|
|
||
|
if (reg_status & ACC_REG_STATUS_MASK_STATUS_BS) {
|
||
|
new_state = CAN_STATE_BUS_OFF;
|
||
|
} else if (reg_status & ACC_REG_STATUS_MASK_STATUS_EP) {
|
||
|
new_state = CAN_STATE_ERROR_PASSIVE;
|
||
|
} else if (reg_status & ACC_REG_STATUS_MASK_STATUS_ES) {
|
||
|
new_state = CAN_STATE_ERROR_WARNING;
|
||
|
} else {
|
||
|
new_state = CAN_STATE_ERROR_ACTIVE;
|
||
|
if (priv->can.state == CAN_STATE_BUS_OFF) {
|
||
|
/* See comment in acc_set_mode() for CAN_MODE_START */
|
||
|
netif_wake_queue(core->netdev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
skb = alloc_can_err_skb(core->netdev, &cf);
|
||
|
|
||
|
if (new_state != priv->can.state) {
|
||
|
enum can_state tx_state, rx_state;
|
||
|
|
||
|
tx_state = (txerr >= rxerr) ?
|
||
|
new_state : CAN_STATE_ERROR_ACTIVE;
|
||
|
rx_state = (rxerr >= txerr) ?
|
||
|
new_state : CAN_STATE_ERROR_ACTIVE;
|
||
|
|
||
|
/* Always call can_change_state() to update the state
|
||
|
* even if alloc_can_err_skb() may have failed.
|
||
|
* can_change_state() can cope with a NULL cf pointer.
|
||
|
*/
|
||
|
can_change_state(core->netdev, cf, tx_state, rx_state);
|
||
|
}
|
||
|
|
||
|
if (skb) {
|
||
|
cf->can_id |= CAN_ERR_CNT;
|
||
|
cf->data[6] = txerr;
|
||
|
cf->data[7] = rxerr;
|
||
|
|
||
|
skb_hwtstamps(skb)->hwtstamp = acc_ts2ktime(priv->ov, msg->ts);
|
||
|
|
||
|
netif_rx(skb);
|
||
|
}
|
||
|
|
||
|
if (new_state == CAN_STATE_BUS_OFF) {
|
||
|
acc_write32(core, ACC_CORE_OF_TX_ABORT_MASK, 0xffff);
|
||
|
can_bus_off(core->netdev);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static void handle_core_interrupt(struct acc_core *core)
|
||
|
{
|
||
|
u32 msg_fifo_head = core->bmfifo.local_irq_cnt & 0xff;
|
||
|
|
||
|
while (core->bmfifo.msg_fifo_tail != msg_fifo_head) {
|
||
|
const union acc_bmmsg *msg =
|
||
|
&core->bmfifo.messages[core->bmfifo.msg_fifo_tail];
|
||
|
|
||
|
switch (msg->msg_id) {
|
||
|
case BM_MSG_ID_RXTXDONE:
|
||
|
handle_core_msg_rxtxdone(core, &msg->rxtxdone);
|
||
|
break;
|
||
|
|
||
|
case BM_MSG_ID_TXABORT:
|
||
|
handle_core_msg_txabort(core, &msg->txabort);
|
||
|
break;
|
||
|
|
||
|
case BM_MSG_ID_OVERRUN:
|
||
|
handle_core_msg_overrun(core, &msg->overrun);
|
||
|
break;
|
||
|
|
||
|
case BM_MSG_ID_BUSERR:
|
||
|
handle_core_msg_buserr(core, &msg->buserr);
|
||
|
break;
|
||
|
|
||
|
case BM_MSG_ID_ERRPASSIVE:
|
||
|
case BM_MSG_ID_ERRWARN:
|
||
|
handle_core_msg_errstatechange(core,
|
||
|
&msg->errstatechange);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
/* Ignore all other BM messages (like the CAN-FD messages) */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
core->bmfifo.msg_fifo_tail =
|
||
|
(core->bmfifo.msg_fifo_tail + 1) & 0xff;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* acc_card_interrupt() - handle the interrupts of an esdACC FPGA
|
||
|
*
|
||
|
* @ov: overview module structure
|
||
|
* @cores: array of core structures
|
||
|
*
|
||
|
* This function handles all interrupts pending for the overview module and the
|
||
|
* CAN cores of the esdACC FPGA.
|
||
|
*
|
||
|
* It examines for all cores (the overview module core and the CAN cores)
|
||
|
* the bmfifo.irq_cnt and compares it with the previously saved
|
||
|
* bmfifo.local_irq_cnt. An IRQ is pending if they differ. The esdACC FPGA
|
||
|
* updates the bmfifo.irq_cnt values by DMA.
|
||
|
*
|
||
|
* The pending interrupts are masked by writing to the IRQ mask register at
|
||
|
* ACC_OV_OF_BM_IRQ_MASK. This register has for each core a two bit command
|
||
|
* field evaluated as follows:
|
||
|
*
|
||
|
* Define, bit pattern: meaning
|
||
|
* 00: no action
|
||
|
* ACC_BM_IRQ_UNMASK, 01: unmask interrupt
|
||
|
* ACC_BM_IRQ_MASK, 10: mask interrupt
|
||
|
* 11: no action
|
||
|
*
|
||
|
* For each CAN core with a pending IRQ handle_core_interrupt() handles all
|
||
|
* busmaster messages from the message FIFO. The last handled message (FIFO
|
||
|
* index) is written to the CAN core to acknowledge its handling.
|
||
|
*
|
||
|
* Last step is to unmask all interrupts in the FPGA using
|
||
|
* ACC_BM_IRQ_UNMASK_ALL.
|
||
|
*
|
||
|
* Return:
|
||
|
* IRQ_HANDLED, if card generated an interrupt that was handled
|
||
|
* IRQ_NONE, if the interrupt is not ours
|
||
|
*/
|
||
|
irqreturn_t acc_card_interrupt(struct acc_ov *ov, struct acc_core *cores)
|
||
|
{
|
||
|
u32 irqmask;
|
||
|
int i;
|
||
|
|
||
|
/* First we look for whom interrupts are pending, card/overview
|
||
|
* or any of the cores. Two bits in irqmask are used for each;
|
||
|
* Each two bit field is set to ACC_BM_IRQ_MASK if an IRQ is
|
||
|
* pending.
|
||
|
*/
|
||
|
irqmask = 0U;
|
||
|
if (READ_ONCE(*ov->bmfifo.irq_cnt) != ov->bmfifo.local_irq_cnt) {
|
||
|
irqmask |= ACC_BM_IRQ_MASK;
|
||
|
ov->bmfifo.local_irq_cnt = READ_ONCE(*ov->bmfifo.irq_cnt);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < ov->active_cores; i++) {
|
||
|
struct acc_core *core = &cores[i];
|
||
|
|
||
|
if (READ_ONCE(*core->bmfifo.irq_cnt) != core->bmfifo.local_irq_cnt) {
|
||
|
irqmask |= (ACC_BM_IRQ_MASK << (2 * (i + 1)));
|
||
|
core->bmfifo.local_irq_cnt = READ_ONCE(*core->bmfifo.irq_cnt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!irqmask)
|
||
|
return IRQ_NONE;
|
||
|
|
||
|
/* At second we tell the card we're working on them by writing irqmask,
|
||
|
* call handle_{ov|core}_interrupt and then acknowledge the
|
||
|
* interrupts by writing irq_cnt:
|
||
|
*/
|
||
|
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, irqmask);
|
||
|
|
||
|
if (irqmask & ACC_BM_IRQ_MASK) {
|
||
|
/* handle_ov_interrupt(); - no use yet. */
|
||
|
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_COUNTER,
|
||
|
ov->bmfifo.local_irq_cnt);
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < ov->active_cores; i++) {
|
||
|
struct acc_core *core = &cores[i];
|
||
|
|
||
|
if (irqmask & (ACC_BM_IRQ_MASK << (2 * (i + 1)))) {
|
||
|
handle_core_interrupt(core);
|
||
|
acc_write32(core, ACC_OV_OF_BM_IRQ_COUNTER,
|
||
|
core->bmfifo.local_irq_cnt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
acc_ov_write32(ov, ACC_OV_OF_BM_IRQ_MASK, ACC_BM_IRQ_UNMASK_ALL);
|
||
|
|
||
|
return IRQ_HANDLED;
|
||
|
}
|